PuSH - Publikationsserver des Helmholtz Zentrums München

Lisitsyna, A. ; Moritz, F. ; Liu, Y.* ; Al Sadat, L.* ; Hauner, H.* ; Claussnitzer, M.* ; Schmitt-Kopplin, P. ; Forcisi, S.

Feature selection pipelines with classification for non-targeted metabolomics combining the neural network and genetic algorithm.

Anal. Chem. 94, 5474-5482 (2022)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Non-targeted metabolomics via high-resolution mass spectrometry methods, such as direct infusion Fourier transform-ion cyclotron resonance mass spectrometry (DI-FT-ICR MS), produces data sets with thousands of features. By contrast, the number of samples is in general substantially lower. This disparity presents challenges when analyzing non-targeted metabolomics data sets and often requires custom methods to uncover information not always accessible via classical statistical techniques. In this work, we present a pipeline that combines a convolutional neural network with traditional statistical approaches and an adaptation of a genetic algorithm. The developed method was applied to a lifestyle intervention cohort data set, where subjects at risk of type 2 diabetes underwent an oral glucose tolerance test. Feature selection is the final result of the pipeline, achieved through classification of the data set via a neural network, with a precision-recall score of over 0.9 on the test set. The features most relevant for the described classification were then chosen via a genetic algorithm. The output of the developed pipeline encompasses approximately 200 features with high predictive scores, providing a fingerprint of the metabolic changes in the prediabetic class on the data set. Our framework presents a new approach which allows to apply complex modeling based on convolutional neural networks for the analysis of high-resolution mass spectrometric data.
Impact Factor
Scopus SNIP
Altmetric
8.008
1.455
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0003-2700
e-ISSN 1520-6882
Zeitschrift Analytical Chemistry
Quellenangaben Band: 94, Heft: 14, Seiten: 5474-5482 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 90000 - German Center for Diabetes Research
30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-501900-482
G-504800-001
Förderungen Deutsches Zentrum für Diabetesforschung (DZD)
Scopus ID 85127892157
PubMed ID 35344349
Erfassungsdatum 2022-07-26