Clough, J.* ; Byrne, N.* ; Öksüz, I.* ; Zimmer, V.A.* ; Schnabel, J.A.* ; King, A.*
A Topological Loss Function for Deep-Learning based Image Segmentation using Persistent Homology.
IEEE Trans. Pattern Anal. Mach. Intell., DOI: 10.1109/TPAMI.2020.3013679 (2020)
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Convolutional Neural Networks ; Image Segmentation ; Loss Measurement ; Medical Imaging ; Network Topology ; Neural Networks ; Persistent Homology ; Segmentation ; Shape ; Topology ; Topology ; Training
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
0
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0162-8828
e-ISSN
1939-3539
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2022-06-10