Ali, S.* ; Zhou, F.* ; Braden, B.* ; Bailey, A.* ; Yang, S.* ; Cheng, G.* ; Zhang, P.* ; Li, X.* ; Kayser, M.* ; Soberanis-Mukul, R.D.* ; Albarqouni, S.* ; Wang, X.* ; Wang, C.* ; Watanabe, S.* ; Öksüz, I.* ; Ning, Q.* ; Khan, M.A.A.* ; Gao, X.W.* ; Realdon, S.* ; Loshchenov, M.* ; Schnabel, J.A.* ; East, J.E.* ; Wagnieres, G.* ; Loschenov, V.B.* ; Grisan, E.* ; Daul, C.* ; Blondel, W.* ; Rittscher, J.*
    
 
    
        
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy.
    
    
        
    
    
        
        Sci. Rep. 10:2748 (2020)
    
    
    
		
		
			
				We present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the limitations of existing state-of-the-art computer vision methods applied to endoscopy and promoting the development of new approaches suitable for clinical translation. Endoscopy is a routine imaging technique for the detection, diagnosis and treatment of diseases in hollow-organs; the esophagus, stomach, colon, uterus and the bladder. However the nature of these organs prevent imaged tissues to be free of imaging artefacts such as bubbles, pixel saturation, organ specularity and debris, all of which pose substantial challenges for any quantitative analysis. Consequently, the potential for improved clinical outcomes through quantitative assessment of abnormal mucosal surface observed in endoscopy videos is presently not realized accurately. The EAD challenge promotes awareness of and addresses this key bottleneck problem by investigating methods that can accurately classify, localize and segment artefacts in endoscopy frames as critical prerequisite tasks. Using a diverse curated multi-institutional, multi-modality, multi-organ dataset of video frames, the accuracy and performance of 23 algorithms were objectively ranked for artefact detection and segmentation. The ability of methods to generalize to unseen datasets was also evaluated. The best performing methods (top 15%) propose deep learning strategies to reconcile variabilities in artefact appearance with respect to size, modality, occurrence and organ type. However, no single method outperformed across all tasks. Detailed analyses reveal the shortcomings of current training strategies and highlight the need for developing new optimal metrics to accurately quantify the clinical applicability of methods.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2020
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2020
    
 
    
    
        ISSN (print) / ISBN
        2045-2322
    
 
    
        e-ISSN
        2045-2322
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 10,  
	    Heft: 1,  
	    Seiten: ,  
	    Artikelnummer: 2748 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Nature Publishing Group
        
 
        
            Verlagsort
            London
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        
    
 
    
        POF Topic(s)
        
    
 
    
        Forschungsfeld(er)
        
    
 
    
        PSP-Element(e)
        
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2022-09-07