PuSH - Publikationsserver des Helmholtz Zentrums München

Öksüz, I.* ; Ruijsink, B.* ; Puyol-Antón, E.* ; Clough, J.R.* ; Cruz, G.* ; Bustin, A.* ; Prieto, C.* ; Botnar, R.M.* ; Rueckert, D.* ; Schnabel, J.A.* ; King, A.P.*

Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning.

Med. Image Anal. 55, 136-147 (2019)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Good quality of medical images is a prerequisite for the success of subsequent image analysis pipelines. Quality assessment of medical images is therefore an essential activity and for large population studies such as the UK Biobank (UKBB), manual identification of artefacts such as those caused by unanticipated motion is tedious and time-consuming. Therefore, there is an urgent need for automatic image quality assessment techniques. In this paper, we propose a method to automatically detect the presence of motion-related artefacts in cardiac magnetic resonance (CMR) cine images. We compare two deep learning architectures to classify poor quality CMR images: 1) 3D spatio-temporal Convolutional Neural Networks (3D-CNN), 2) Long-term Recurrent Convolutional Network (LRCN). Though in real clinical setup motion artefacts are common, high-quality imaging of UKBB, which comprises cross-sectional population data of volunteers who do not necessarily have health problems creates a highly imbalanced classification problem. Due to the high number of good quality images compared to the relatively low number of images with motion artefacts, we propose a novel data augmentation scheme based on synthetic artefact creation in k-space. We also investigate a learning approach using a predetermined curriculum based on synthetic artefact severity. We evaluate our pipeline on a subset of the UK Biobank data set consisting of 3510 CMR images. The LRCN architecture outperformed the 3D-CNN architecture and was able to detect 2D+time short axis images with motion artefacts in less than 1ms with high recall. We compare our approach to a range of state-of-the-art quality assessment methods. The novel data augmentation and curriculum learning approaches both improved classification performance achieving overall area under the ROC curve of 0.89.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
8.880
3.688
33
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Artifact ; Cardiac Mr Motion Artefacts ; Convolutional Neural Networks ; Image Quality Assessment ; Lstm
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 55, Heft: , Seiten: 136-147 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 85064952229
Erfassungsdatum 2022-09-07