Oda, H.* ; Roth, H.R.* ; Bhatia, K.K.* ; Oda, M.* ; Kitasaka, T.* ; Iwano, S.* ; Homma, H.* ; Takabatake, H.* ; Mori, M.* ; Natori, H.* ; Schnabel, J.A.* ; Mori, K.*
    
 
    
        
Dense volumetric detection and segmentation of mediastinal lymph nodes in chest CT images.
    
    
        
    
    
        
        Proc. SPIE 10575 (2018)
    
    
    
		
		
			
				We propose a novel mediastinal lymph node detection and segmentation method from chest CT volumes based on fully convolutional networks (FCNs). Most lymph node detection methods are based on filters for blob-like structures, which are not specific for lymph nodes. The 3D U-Net is a recent example of the state-of-the-art 3D FCNs. The 3D U-Net can be trained to learn appearances of lymph nodes in order to output lymph node likelihood maps on input CT volumes. However, it is prone to oversegmentation of each lymph node due to the strong data imbalance between lymph nodes and the remaining part of the CT volumes. To moderate the balance of sizes between the target classes, we train the 3D U-Net using not only lymph node annotations but also other anatomical structures (lungs, airways, aortic arches, and pulmonary arteries) that can be extracted robustly in an automated fashion. We applied the proposed method to 45 cases of contrast-enhanced chest CT volumes. Experimental results showed that 95.5% of lymph nodes were detected with 16.3 false positives per CT volume. The segmentation results showed that the proposed method can prevent oversegmentation, achieving an average Dice score of 52.3 ± 23.1%, compared to the baseline method with 49.2 ± 23.8%, respectively.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Computer-aided Diagnosis ; Fully Convolutional Network ; Imbalance Weighting
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2018
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2018
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 10575 
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-07