Enescu, M.* ; Bhushan, M.* ; Hill, E.J.* ; Franklin, J.* ; Anderson, E.M.* ; Sharma, R.A.* ; Schnabel, J.A.*
    
 
    
        
pCT derived arterial input function for improved pharmacokinetic analysis of longitudinal dceMRI for colorectal cancer.
    
    
        
    
    
        
        In:. SPIE, 2013. (Proc. SPIE ; 8669)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Dynamic contrast-enhanced MRI is a dynamic imaging technique that is now widely used for cancer imaging. Changes in tumour microvasculature are typically quantified by pharmacokinetic modelling of the contrast uptake curves. Reliable pharmacokinetic parameter estimation depends on the measurement of the arterial in- put function, which can be obtained from arterial blood sampling, or extracted from the image data directly. However, arterial blood sampling poses additional risks to the patient, and extracting the input function from MR intensities is not reliable. In this work, we propose to compute a perfusion CT based arterial input function, which is then employed for dynamic contrast enhanced MRI pharmacokinetic parameter estimation. Here, pa- rameter estimation is performed simultaneously with intra-sequence motion correction by using nonlinear image registration. Ktrans maps obtained with this approach were compared with those obtained using a population averaged arterial input function, i.e. Orton. The dataset comprised 5 rectal cancer patients, who had been imaged with both perfusion CT and dynamic contrast enhanced MRI, before and after the administration of a radiosensitising drug. Ktrans distributions pre and post therapy were computed using both the perfusion CT and the Orton arterial input function. Perfusion CT derived arterial input functions can be used for pharmacokinetic modelling of dynamic contrast enhanced MRI data, when perfusion CT images of the same patients are available. Compared to the Orton model, perfusion CT functions have the potential to give a more accurate separation between responders and non-responders.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Arterial Input Function ; Dcemri ; Motion Correction ; Perfusion Ct Arterial Input Function ; Pharmacokinetic Modelling ; Rectal Cancer ; Registration
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2013
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2013
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 8669 
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-06