Kuklisova-Murgasova, M.* ; Quaghebeur, G.* ; Rutherford, M.A.* ; Hajnal, J.V.* ; Schnabel, J.A.*
Reconstruction of fetal brain MRI with intensity matching and complete outlier removal.
Med. Image Anal. 16, 1550-1564 (2012)
DOI
PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We propose a method for the reconstruction of volumetric fetal MRI from 2D slices, comprising super-resolution reconstruction of the volume interleaved with slice-to-volume registration to correct for the motion. The method incorporates novel intensity matching of acquired 2D slices and robust statistics which completely excludes identified misregistered or corrupted voxels and slices. The reconstruction method is applied to motion-corrupted data simulated from MRI of a preterm neonate, as well as 10 clinically acquired thick-slice fetal MRI scans and three scan-sequence optimized thin-slice fetal datasets. The proposed method produced high quality reconstruction results from all the datasets to which it was applied. Quantitative analysis performed on simulated and clinical data shows that both intensity matching and robust statistics result in statistically significant improvement of super-resolution reconstruction. The proposed novel EM-based robust statistics also improves the reconstruction when compared to previously proposed Huber robust statistics. The best results are obtained when thin-slice data and the correct approximation of the point spread function is used. This paper addresses the need for a comprehensive reconstruction algorithm of 3D fetal MRI, so far lacking in the scientific literature.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
3d Reconstruction ; Bias Field ; Fetal Mri ; Intensity Matching ; Super-resolution
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2012
Prepublished im Jahr
HGF-Berichtsjahr
2012
ISSN (print) / ISBN
1361-8415
e-ISSN
1361-8415
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 8,
Seiten: 1550-1564
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2022-09-06