Schnabel, J.A.* ; Arridge, S.R.*
Multiscale shape description of MR brain images using active contour models.
Proc. SPIE 2710, 596-606 (1996)
In this paper we present a hierarchical multiscale shape description tool based on active contour models which enables data-driven quantitative and qualitative shape studies of MR brain images at multiple scales. At large scales, global shape properties are extracted from the image, while smaller scale features are suppressed. At lower scales, the detailed shape characteristics become more prominent. Extracting a shape at different levels of scale yields a hierarchical multiscale shape stack. This shape stack can be used to localize and characterize shape changes like deformations and abnormalities at different levels of scale. The shape description is performed as a set of implicit segmentation steps at multiple scales yielding descriptions of an object at various levels of detail. Implicit segmentation is carried out using the well-known model of active contours. Starting from an initial active contour, several implicit optimization processes with differently regularized energy functions are performed, where the energy functions are represented as functions of scale. The presented algorithm for shape focusing and description based on active contour models shows promising results on extracting and characterizing complex shapes in MR brain images at a large set of scales.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Active Contour Models ; Contour Extraction ; Curvature ; Differential Invariants ; Hierarchical Description ; Multiscale Representation ; Shape Analysis ; Snakes
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
1996
Prepublished im Jahr
HGF-Berichtsjahr
1996
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 2710,
Heft: ,
Seiten: 596-606
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2022-09-05