Castellano-Smith, A.D.* ; Hartkens, T.* ; Schnabel, J.A.* ; Hose, R.* ; Liu, H.* ; Hall, W.* ; Truwit, C.* ; Hawkes, D.J.* ; Hill, D.L.G.*
A registration based mesh construction technique for finite element models of brains.
Proc. SPIE 4684, 538-549 (2002)
The generation of patient specific meshes for Finite Element Methods (FEM) with application to brain deformation is a time consuming process, but is essential for the modelling of intra-operative deformation of the brain during neurosurgery using FEM techniques. We present an automatic method for the generation of FEM meshes fitting patient data. The method is based on non-rigid registration of patient MR images to an atlas brain image, followed by deformation of a high-quality mesh of this atlas brain. We demonstrate the technique on brain MRI images from 12 patients undergoing neurosurgery. We show that the FEM meshes generated by our technique are of good quality. We then demonstrate the utility of these FEM meshes by simulating simple neurosurgical scenarios on example patients, and show that the deformations predicted by our brain model match the observed deformations. The meshes generated by our technique are of good quality, and are suitable for modelling the types of deformation observed during neurosurgery. The deformations predicted by a simple loading scenario match well with those observed following the actual surgery. This paper does not attempt an exhaustive study of brain deformation, but does provide an essential tool for such a study - a method of rapidly generating Finite Element Meshes fitting individual subject brains. © 2002 SPIE · 1605-7422/02/$15.00.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2002
Prepublished im Jahr
HGF-Berichtsjahr
2002
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 4684,
Heft: ,
Seiten: 538-549
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2022-09-05