Cahill, N.D.* ; Schnabel, J.A.* ; Noble, J.A.* ; Hawkes, D.J.*
    
 
    
        
Overlap invariance of cumulative residual entropy measures for multimodal image alignment.
    
    
        
    
    
        
        Proc. SPIE 7259, DOI: 10.1117/12.811585 (2009)
    
    
    
		
		
			
				Cumulative residual entropy (CRE)1,2 has recently been advocated as an alternative to differential entropy for describing the complexity of an image. CRE has been used to construct an alternate form of mutual information (MI),3,4 called symmetric cumulative mutual information (SCMI) 5 or cross-CRE (CCRE).6 This alternate form of MI has exhibited superior performance to traditional MI in a variety of ways.6 However, like traditional MI, SCMI suffers from sensitivity to the changing size of the overlap between images over the course of registration. Alternative similarity measures based on differential entropy, such as normalized mutual information (NMI),7 entropy correlation coefficient (ECC)8,9 and modified mutual information (M-MI),10 have been shown to exhibit superior performance to MI with respect to the overlap sensitivity problem. In this paper, we show how CRE can be used to compute versions of NMI, ECC, and M-MI that we call the normalized cumulative mutual information (NCMI), cumulative residual entropy correlation coefficient (CRECC), and modified symmetric cumulative mutual information (M-SCMI). We use publicly available CT, PET, and MR brain images* with known ground truth transformations to evaluate the performance of these CRE-based similarity measures for rigid multimodal registration. Results show that the proposed similarity measures provide a statistically significant improvement in target registration error (TRE) over SCMI. © 2009 Copyright SPIE - The International Society for Optical Engineering.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Registration
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2009
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2009
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 7259 
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2022-09-05