PuSH - Publikationsserver des Helmholtz Zentrums München

Doryab, A. ; Taskin, M.B.* ; Stahlhut, P.* ; Groll, J.* ; Schmid, O.

Real-time measurement of cell mechanics as a clinically relevant readout of an in vitro lung fibrosis model established on a bioinspired basement membrane.

Adv. Mater. 34:e2205083 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Lung fibrosis, as one of the major post-COVID complications, is a progressive and ultimately fatal disease without a cure. Here, we introduce an organ- and disease-specific in vitro mini-lung fibrosis model equipped with non-invasive real-time monitoring of cell mechanics as a functional readout. To establish an intricate multi-culture model under physiologic conditions, we developed a biomimetic ultrathin basement (BETA) membrane (<1 μm) with unique properties, including biocompatibility, permeability, and high elasticity (<10 kPa) for cell culturing under air-liquid interface (ALI) and cyclic mechanical stretch conditions. The human-based triple co-culture fibrosis model, which includes epithelial and endothelial cell lines combined with primary fibroblasts from idiopathic pulmonary fibrosis (IPF) patients established on the BETA membrane, is integrated into a millifluidic bioreactor system (CIVIC) with dose-controlled aerosolized drug delivery, mimicking inhalation therapy. We show the real-time measurement of cell/tissue stiffness (and compliance) as a clinical biomarker of the progression/attenuation of fibrosis upon drug treatment, which was confirmed for inhaled Nintedanib -an FDA-approved anti-fibrosis drug. The mini-lung fibrosis model allows the combined longitudinal testing of pharmacodynamics and pharmacokinetics of drugs, which is expected to enhance the predictive capacity of preclinical models and hence facilitate the development of approved therapies for lung fibrosis. This article is protected by copyright. All rights reserved.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
32.086
0.000
5
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Aerosolized Drug Delivery ; Biomimetic Membrane ; Cell Mechanics ; Cyclic Mechanical Stretch ; In Vitro Lung Fibrosis Model
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0935-9648
e-ISSN 1521-4095
Zeitschrift Advanced materials
Quellenangaben Band: 34, Heft: 41, Seiten: , Artikelnummer: e2205083 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-505000-008
Förderungen Thomas Gerlach and Josef Promoli
Klinikum der Universitat Munchen
Scopus ID 85137784824
PubMed ID 36030365
Erfassungsdatum 2022-10-24