Burian, E.* ; Jungmann, F.* ; Kaissis, G.* ; Lohöfer, F.K.* ; Spinner, C.D.* ; Lahmer, T.* ; Treiber, M.* ; Dommasch, M.* ; Schneider, G.* ; Geisler, F.* ; Huber, W.* ; Protzer, U.* ; Schmid, R.M.* ; Schwaiger, M.* ; Makowski, M.R.* ; Braren, R.F.*
Intensive care risk estimation in COVID-19 pneumonia based on clinical and imaging parameters: Experiences from the Munich cohort.
J. Clin. Med. 9:1514 (2020)
The evolving dynamics of coronavirus disease 2019 (COVID-19) and the increasing infection numbers require diagnostic tools to identify patients at high risk for a severe disease course. Here we evaluate clinical and imaging parameters for estimating the need of intensive care unit (ICU) treatment. We collected clinical, laboratory and imaging data from 65 patients with confirmed COVID-19 infection based on polymerase chain reaction (PCR) testing. Two radiologists evaluated the severity of findings in computed tomography (CT) images on a scale from 1 (no characteristic signs of COVID-19) to 5 (confluent ground glass opacities in over 50% of the lung parenchyma). The volume of affected lung was quantified using commercially available software. Machine learning modelling was performed to estimate the risk for ICU treatment. Patients with a severe course of COVID-19 had significantly increased interleukin (IL)-6, C-reactive protein (CRP), and leukocyte counts and significantly decreased lymphocyte counts. The radiological severity grading was significantly increased in ICU patients. Multivariate random forest modelling showed a mean ± standard deviation sensitivity, specificity and accuracy of 0.72 ± 0.1, 0.86 ± 0.16 and 0.80 ± 0.1 and a receiver operating characteristic-area under curve (ROC-AUC) of 0.79 ± 0.1. The need for ICU treatment is independently associated with affected lung volume, radiological severity score, CRP, and IL-6.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Covid-19 ; Clinical Parameters ; Computed Tomography ; Intensive Care Unit ; Radiological Parameters ; Severe Acute Respiratory Syndrome Coronavirus 2 (sars-cov-2)
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2077-0383
e-ISSN
2077-0383
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 9,
Heft: 5,
Seiten: ,
Artikelnummer: 1514
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Basel
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530014-001
Förderungen
Copyright
Erfassungsdatum
2022-09-13