PuSH - Publikationsserver des Helmholtz Zentrums München

Kaissis, G.* ; Ziegelmayer, S.* ; Lohöfer, F.K.* ; Harder, F.N.* ; Jungmann, F.* ; Sasse, D.* ; Muckenhuber, A.* ; Yen, H.Y.* ; Steiger, K.* ; Siveke, J.* ; Friess, H.* ; Schmid, R.* ; Weichert, W.* ; Makowski, M.R.* ; Braren, R.F.*

Image-based molecular phenotyping of pancreatic ductal adenocarcinoma.

J. Clin. Med. 9:724 (2020)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test p = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test p < 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.
Impact Factor
Scopus SNIP
Altmetric
3.303
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Molecular Subtypes ; Pancreatic Cancer ; Radiomics
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2077-0383
e-ISSN 2077-0383
Quellenangaben Band: 9, Heft: 3, Seiten: , Artikelnummer: 724 Supplement: ,
Verlag MDPI
Verlagsort Basel
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530014-001
Förderungen Technische Universität München
Deutschen Konsortium für Translationale Krebsforschung
Deutsche Forschungsgemeinschaft
PubMed ID 32155990
Erfassungsdatum 2022-09-13