Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Combined DCE-MRI- and FDG-PET enable histopathological grading prediction in a rat model of hepatocellular carcinoma.
Eur. J. Radiol. 124:108848 (2020)
PURPOSE: To test combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and 18F-FDG positron emission tomography (FDG-PET)-derived parameters for prediction of histopathological grading in a rat Diethyl Nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) model. METHODS: 15 male Wistar rats, aged 10 weeks were treated with oral DEN 0.01 % in drinking water and monitored until HCCs were detectable. DCE-MRI and PET were performed consecutively on small animal scanners. 38 tumors were identified and manually segmented based on HCC-specific contrast enhancement patterns. Grading (G2/3: 24 tumors, G1:14 tumors) alongside other histopathological parameters, tumor volume, contrast agent and 18F-FDG uptake metrics were noted. Class imbalance was addressed using SMOTE and collinearity was removed using hierarchical clustering and principal component analysis. A logistic regression model was fit separately to the individual parameter groups (DCE-MRI-derived, PET-derived, tumor volume) and the combined parameters. RESULTS: The combined model using all imaging-derived parameters achieved a mean ± STD sensitivity of 0.88 ± 0.16, specificity of 0.70 ± 0.20 and AUC of 0.90 ± 0.03. No correlation was found between tumor grading and tumor volume, morphology, necrosis, extracellular matrix, immune cell infiltration or underlying liver fibrosis. CONCLUSION: A combination of DCE-MRI- and 18F-FDG-PET-derived parameters provides high accuracy for histopathological grading of hepatocellular carcinoma in a relevant translational model system.
Impact Factor
Scopus SNIP
Altmetric
2.687
1.217
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Dce-mri ; Fdg-pet ; Hepatocellular Carcinoma ; Preclinical Models ; Tumour Grading
Sprache
englisch
Veröffentlichungsjahr
2020
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0720-048X
e-ISSN
0720-048X
Zeitschrift
European Journal of Radiology
Quellenangaben
Band: 124,
Artikelnummer: 108848
Verlag
Elsevier
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530014-001
PubMed ID
32006931
Erfassungsdatum
2022-09-13