PuSH - Publikationsserver des Helmholtz Zentrums München

Kaissis, G.* ; Ziegelmayer, S.* ; Lohöfer, F.* ; Steiger, K.* ; Algül, H.* ; Muckenhuber, A.* ; Yen, H.Y.* ; Rummeny, E.* ; Friess, H.* ; Schmid, R.* ; Weichert, W.* ; Siveke, J.T.* ; Braren, R.*

A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy.

PLoS ONE 14:e0218642 (2019)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
PURPOSE: Development of a supervised machine-learning model capable of predicting clinically relevant molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) from diffusion-weighted-imaging-derived radiomic features. METHODS: The retrospective observational study assessed 55 surgical PDAC patients. Molecular subtypes were defined by immunohistochemical staining of KRT81. Tumors were manually segmented and 1606 radiomic features were extracted with PyRadiomics. A gradient-boosted-tree algorithm was trained on 70% of the patients (N = 28) and tested on 30% (N = 17) to predict KRT81+ vs. KRT81- tumor subtypes. A gradient-boosted survival regression model was fit to the disease-free and overall survival data. Chemotherapy response and survival were assessed stratified by subtype and radiomic signature. Radiomic feature importance was ranked. RESULTS: The mean±STDEV sensitivity, specificity and ROC-AUC were 0.90±0.07, 0.92±0.11, and 0.93±0.07, respectively. The mean±STDEV concordance indices between the disease-free and overall survival predicted by the model based on the radiomic parameters and actual patient survival were 0.76±0.05 and 0.71±0.06, respectively. Patients with a KRT81+ subtype experienced significantly diminished median overall survival compared to KRT81- patients (7.0 vs. 22.6 months, HR 4.03, log-rank-test P = <0.001) and a significantly improved response to gemcitabine-based chemotherapy over FOLFIRINOX (10.14 vs. 3.8 months median overall survival, HR 2.33, P = 0.037) compared to KRT81- patients, who responded significantly better to FOLFIRINOX over gemcitabine-based treatment (30.8 vs. 13.4 months median overall survival, HR 2.41, P = 0.027). Entropy was ranked as the most important radiomic feature. CONCLUSIONS: The machine-learning based analysis of radiomic features enables the prediction of subtypes of PDAC, which are highly relevant for disease-free and overall patient survival and response to chemotherapy.
Impact Factor
Scopus SNIP
Altmetric
2.776
1.123
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 14, Heft: 10, Seiten: , Artikelnummer: e0218642 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530014-001
PubMed ID 31577805
Erfassungsdatum 2022-09-13