PuSH - Publikationsserver des Helmholtz Zentrums München

Tritschler, S. ; Thomas, M. ; Böttcher, A. ; Ludwig, B. ; Schmid, J.* ; Schubert, U.* ; Kemter, E.* ; Wolf, E.* ; Lickert, H. ; Theis, F.J.

A transcriptional cross species map of pancreatic islet cells.

Mol. Metab. 66:101595 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Objective: Pancreatic islets of Langerhans secrete hormones to regulate systemic glucose levels. Emerging evidence suggests that islet cells are functionally heterogeneous to allow a fine-tuned and efficient endocrine response to physiological changes. A precise description of the molecular basis of this heterogeneity, in particular linking animal models to human islets, is an important step towards identifying the factors critical for endocrine cell function in physiological and pathophysiological conditions. Methods: In this study, we used single-cell RNA sequencing to profile more than 50′000 endocrine cells isolated from healthy human, pig and mouse pancreatic islets and characterize transcriptional heterogeneity and evolutionary conservation of those cells across the three species. We systematically delineated endocrine cell types and α- and β-cell heterogeneity through prior knowledge- and data-driven gene sets shared across species, which altogether capture common and differential cellular properties, transcriptional dynamics and putative driving factors of state transitions. Results: We showed that global endocrine expression profiles correlate, and that critical identity and functional markers are shared between species, while only approximately 20% of cell type enriched expression is conserved. We resolved distinct human α- and β-cell states that form continuous transcriptional landscapes. These states differentially activate maturation and hormone secretion programs, which are related to regulatory hormone receptor expression, signaling pathways and different types of cellular stress responses. Finally, we mapped mouse and pig cells to the human reference and observed that the spectrum of human α- and β-cell heterogeneity and aspects of such functional gene expression are better recapitulated in the pig than mouse data. Conclusions: Here, we provide a high-resolution transcriptional map of healthy human islet cells and their murine and porcine counterparts, which is easily queryable via an online interface. This comprehensive resource informs future efforts that focus on pancreatic endocrine function, failure and regeneration, and enables to assess molecular conservation in islet biology across species for translational purposes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
8.568
0.000
5
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cross Species Conservation ; Pancreatic Islets ; Single-cell Rnaseq ; Translation ; α-cell ; β-cell; Beta-cells; Insulin-resistance; Heterogeneity; Architecture; Plasticity; Proinsulin; Signatures; Predictor; Secretion
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2212-8778
e-ISSN 2212-8778
Zeitschrift Molecular Metabolism
Quellenangaben Band: 66, Heft: , Seiten: , Artikelnummer: 101595 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Computational Biology (ICB)
Institute of Diabetes and Regeneration Research (IDR)
Institute of Pancreatic Islet Research (IPI)
Institute of AI for Health (AIH)
Institute of Stem Cell Research (ISF)
POF Topic(s) 30205 - Bioengineering and Digital Health
30201 - Metabolic Health
90000 - German Center for Diabetes Research
30204 - Cell Programming and Repair
Forschungsfeld(er) Enabling and Novel Technologies
Helmholtz Diabetes Center
Stem Cell and Neuroscience
PSP-Element(e) G-503800-001
G-502300-001
G-502600-007
G-540007-001
G-500800-001
Förderungen Wellcome Trust
Chan Zuckerberg Initiative DAF (advised fund of Silicon Valley Community Foundation)
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Helmholtz Association
BMBF
Volkswagen Foundation
DFG
Federal Ministry of Education and Research (BMBF)
European Union
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Scopus ID 85138782047
PubMed ID 36113773
Erfassungsdatum 2022-10-08