Bocher, O. ; Ludwig, T.E.* ; Oglobinsky, M.S.* ; Marenne, G.* ; Deleuze, J.F.* ; Suryakant, S.* ; Odeberg, J.* ; Morange, P.E.* ; Tregouet, D.A.* ; Perdry, H.* ; Genin, E.*
Testing for association with rare variants in the coding and non-coding genome: RAVA-FIRST, a new approach based on CADD deleteriousness score.
PLoS Genet. 18:e1009923 (2022)
Rare variant association tests (RVAT) have been developed to study the contribution of rare variants widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare variants in testing units and to filter variants to retain only the most likely causal ones. In the exome, genes are natural testing units and variants are usually filtered based on their functional consequences. However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No natural biological unit is available for aggregating rare variants. Sliding windows procedures have been proposed to circumvent this difficulty, however they are blind to biological information and result in a large number of tests. We propose a new strategy to perform RVAT on WGS data: "RAVA-FIRST" (RAre Variant Association using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of variants observed in the gnomAD populations, which are referred to as "CADD regions". (2) A region-dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden test is performed with sub-scores computed for each genomic category within each CADD region. Both on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on chromosome 18 enriched for rare variants in early-onset patients. This region that was missed by standard sliding windows procedures is included in a TAD region that contains a strong candidate gene. RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by its implementation in the R package Ravages.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Expression; Adhesion; Regions; Cd226
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1553-7390
e-ISSN
1553-7404
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 18,
Heft: 9,
Seiten: ,
Artikelnummer: e1009923
Supplement: ,
Reihe
Verlag
Public Library of Science (PLoS)
Verlagsort
1160 Battery Street, Ste 100, San Francisco, Ca 94111 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Translational Genomics (ITG)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-506700-001
Förderungen
Université de Bordeaux
Stockholms Läns Landsting
Institut National de la Santé et de la Recherche Médicale
Agence Nationale de la Recherche
Familjen Erling-Perssons Stiftelse
GENMED Laboratory of Excellence on Medical Genomics
French Investment for the Future
Copyright
Erfassungsdatum
2022-11-24