Cluster analysis statistical spectroscopy for the identification of metabolites in 1H NMR metabolomics.
Metabolites 12:992 (2022)
Metabolite identification in non-targeted NMR-based metabolomics remains a challenge. While many peaks of frequently occurring metabolites are assigned, there is a high number of unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis. Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which gives important information on possible structural and/or biological correlations from the NMR spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a hypothesis, a full structural elucidation approach would be required. The approach allows a higher identification yield in NMR spectra, especially once pathway-related subclusters are identified.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Metabolite Identification ; Metabolomics ; Nmr Spectroscopy ; Urine; KORA, Method, Metabolomik
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
2218-1989
e-ISSN
2218-1989
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: 10,
Seiten: ,
Artikelnummer: 992
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
Genetics and Epidemiology
PSP-Element(e)
G-504800-001
G-504090-001
G-504091-001
G-504000-010
Förderungen
Münchner Zentrum für Gesundheitswissenschaften, Ludwig-Maximilians-Universität München
Helmholtz Zentrum Munchen
Seventh Framework Programme
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2022-11-04