Hawe, J. ; Saha, A.* ; Waldenberger, M. ; Kunze, S. ; Wahl, S. ; Müller-Nurasyid, M. ; Prokisch, H.* ; Grallert, H. ; Herder, C.* ; Peters, A. ; Strauch, K. ; Theis, F.J.* ; Gieger, C. ; Chambers, J.* ; Battle, A.* ; Heinig, M.
Network reconstruction for trans acting genetic loci using multi-omics data and prior information.
Genome Med. 14:125 (2022)
BACKGROUND: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks underlying trans-QTL hotspots using human cohort data and data-driven prior information. METHODS: We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior information to guide network inference was manually curated from large-scale biological databases. The inference approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing methods were subsequently applied to real-world human cohort data. RESULTS: Our benchmarks showed that prior-based strategies outperform methods without prior information in simulated data and show better replication across datasets. Application of our approach to human cohort data highlighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel functional hypotheses. CONCLUSIONS: We demonstrate that existing biological knowledge can improve the integrative analysis of networks underlying trans associations and generate novel hypotheses about regulatory mechanisms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Data Integration ; Machine Learning ; Multi-omics ; Network Inference ; Personalized Medicine ; Prior Information ; Simulation ; Systems Biology; KORA, Epigenetik, Expression, Genetik
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1756-994X
e-ISSN
1756-994X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 1,
Seiten: ,
Artikelnummer: 125
Supplement: ,
Reihe
Verlag
BioMed Central
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e)
G-553500-001
G-504090-001
G-504091-001
G-504091-004
G-504100-001
G-504091-002
G-504000-010
Förderungen
Singapore National Medical Research Council
Copyright
Erfassungsdatum
2022-12-03