Png, G. ; Gerlini, R. ; Hatzikotoulas, K. ; Barysenska, A. ; Rayner, N.W. ; Klarić, L.* ; Rathkolb, B. ; Aguilar-Pimentel, J.A. ; Rozman, J. ; Fuchs, H. ; Gailus-Durner, V. ; Tsafantakis, E.* ; Karaleftheri, M.* ; Dedoussis, G.* ; Pietrzik, C.U.* ; Wilson, J.F.* ; Hrabě de Angelis, M. ; Becker-Pauly, C.* ; Gilly, A. ; Zeggini, E.
Identifying causal serum protein-cardiometabolic trait relationships using whole genome sequencing.
Hum. Mol. Genet. 32, 1266-1275 (2022)
Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically-determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 255 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analysing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5x WGS) and Pomak (n = 1537; 18.4x WGS), we detect 302 independently-associated pQTL variants for 171 proteins, including 12 rare variants (minor allele frequency [MAF] < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations, but have drifted up in frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including MEP1B for high-density lipoprotein levels; and describe a knock-out Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships, and demonstrate the importance of isolated populations in pQTL analysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Metaanalysis; Cholesterol; Expression; Receptors; Discovery; Platform
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
0964-6906
e-ISSN
1460-2083
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 32,
Heft: 8,
Seiten: 1266-1275
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-506700-001
G-500692-001
G-500600-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG)
German Center for Diabetes Research (DZD)
German Federal Ministry of Education and Research
National Productivity Investment Fund
MRC Human Genetics Unit programme grant, Quantitative traits in health and disease'
European Union
Arthritis Research UK
Chief Scientist Office of the Scottish Government
European Research Council
Wellcome Trust
Copyright
Erfassungsdatum
2022-11-17