PuSH - Publikationsserver des Helmholtz Zentrums München

Schauer, J.* ; Wieser, H.P.* ; Huang, Y. ; Ruser, H.* ; Lascaud, J.* ; Würl, M.* ; Chmyrov, A. ; Vidal, M.* ; Herault, J.* ; Ntziachristos, V. ; Assmann, W.* ; Parodi, K.* ; Dollinger, G.*

Proton beam range verification by means of ionoacoustic measurements at clinically relevant doses using a correlation-based evaluation.

Front. Oncol. 12:925542 (2022)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Purpose: The Bragg peak located at the end of the ion beam range is one of the main advantages of ion beam therapy compared to X-Ray radiotherapy. However, verifying the exact position of the Bragg peak within the patient online is a major challenge. The goal of this work was to achieve submillimeter proton beam range verification for pulsed proton beams of an energy of up to 220 MeV using ionoacoustics for a clinically relevant dose deposition of typically 2 Gy per fraction by i) using optimal proton beam characteristics for ionoacoustic signal generation and ii) improved signal detection by correlating the signal with simulated filter templates. Methods: A water tank was irradiated with a preclinical 20 MeV proton beam using different pulse durations ranging from 50 ns up to 1 μs in order to maximise the signal-to-noise ratio (SNR) of ionoacoustic signals. The ionoacoustic signals were measured using a piezo-electric ultrasound transducer in the MHz frequency range. The signals were filtered using a cross correlation-based signal processing algorithm utilizing simulated templates, which enhances the SNR of the recorded signals. The range of the protons is evaluated by extracting the time of flight (ToF) of the ionoacoustic signals and compared to simulations from a Monte Carlo dose engine (FLUKA). Results: Optimised SNR of 28.0 ± 10.6 is obtained at a beam current of 4.5 μA and a pulse duration of 130 ns at a total peak dose deposition of 0.5 Gy. Evaluated ranges coincide with Monte Carlo simulations better than 0.1 mm at an absolute range of 4.21 mm. Higher beam energies require longer proton pulse durations for optimised signal generation. Using the correlation-based post-processing filter a SNR of 17.8 ± 5.5 is obtained for 220 MeV protons at a total peak dose deposition of 1.3 Gy. For this clinically relevant dose deposition and proton beam energy, submillimeter range verification was achieved at an absolute range of 303 mm in water. Conclusion: Optimal proton pulse durations ensure an ideal trade-off between maximising the ionoacoustic amplitude and minimising dose deposition. In combination with a correlation-based post-processing evaluation algorithm, a reasonable SNR can be achieved at low dose levels putting clinical applications for online proton or ion beam range verification into reach.
Impact Factor
Scopus SNIP
Altmetric
5.738
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cross-correlation ; In-vivo Range Verification ; Ionoacoustics ; Matched Filtering ; Protoacoustics ; Proton Therapy ; Range Verification In Proton Therapy ; Signal-to-noise Ratio
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2234-943X
e-ISSN 2234-943X
Zeitschrift Frontiers in Oncology
Quellenangaben Band: 12, Heft: , Seiten: , Artikelnummer: 925542 Supplement: ,
Verlag Frontiers
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505500-001
Förderungen Centre for Advanced Laser Applications
Munich-Centre for Advanced Photonics
Deutsche Forschungsgemeinschaft
European Commission
Scopus ID 85142161633
PubMed ID 36408153
Erfassungsdatum 2022-12-07