Bhatia, H.S. ; Brunner, A.D.* ; Öztürk, F. ; Kapoor, S. ; Rong, Z. ; Mai, H. ; Thielert, M.* ; Ali, M. ; Al-Maskari, R.* ; Paetzold, J.C. ; Kofler, F. ; Todorov, M.I. ; Molbay, M. ; Kolabas, Z.I. ; Negwer, M. ; Höher, L. ; Steinke, H.* ; Dima, A.* ; Gupta, B. ; Kaltenecker, D. ; Caliskan, Ö.S. ; Brandt, D. ; Krahmer, N. ; Müller, S.* ; Lichtenthaler, S.F.* ; Hellal, F. ; Bechmann, I.* ; Menze, B.* ; Theis, F.J. ; Mann, M.* ; Ertürk, A.
Spatial proteomics in three-dimensional intact specimens.
Cell 185, 5040-5058.e19 (2022)
Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. Video abstract: [Figure presented]
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Ai ; Alzheimer's ; Deep Learning ; Human Heart ; Mass Spectrometry ; Proteomics ; Robotics ; Spatial-omics ; Tbi ; Tissue Clearing; Alzheimers-disease; Mouse Model; Gene-expression; A-beta; Brain; Normalization; Resolution; Platform; Complex; Plaques
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
0092-8674
e-ISSN
1097-4172
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 185,
Heft: 26,
Seiten: 5040-5058.e19
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cell Press
Verlagsort
Cambridge, Mass.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Forschungsfeld(er)
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e)
G-505800-001
G-530001-001
G-501900-253
G-501900-221
G-502200-001
G-503800-001
Förderungen
Max Planck Society for the Advancement of Science
Helmholtz AI program through grant Deeproad
Nomis Heart Atlas Project Grant (Nomis Foundation)
ERC Consolidator Grant (AE)
Bundesministerium fur Bildung und Wissenschaft (BMBF)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy
Vascular Dementia Research Foundation
International Max Planck Research School for Life Sciences (IMPRS-LS)
Copyright
Erfassungsdatum
2023-01-10