Allesøe, R.L.* ; Lundgaard, A.T.* ; Hernández Medina, R.* ; Aguayo-Orozco, A.* ; Johansen, J.D.* ; Nissen, J.N.* ; Brorsson, C.* ; Mazzoni, G.* ; Niu, L.* ; Biel, J.H.* ; Brasas, V.* ; Webel, H.* ; Benros, M.E.* ; Pedersen, A.G.* ; Chmura, P.J.* ; Jacobsen, U.P.* ; Mari, A.* ; Koivula, R.W.* ; Mahajan, A.* ; Viñuela, A.* ; Tajes, J.F.* ; Sharma, S. ; Haid, M. ; Hong, M.G.* ; Musholt, P.B.* ; De Masi, F.* ; Vogt, J.* ; Pedersen, H.K.* ; Gudmundsdottir, V.* ; Jones, A.* ; Kennedy, G.* ; Bell, J.* ; Thomas, E.L.* ; Frost, G.* ; Thomsen, H.* ; Hansen, E.* ; Hansen, T.H.* ; Vestergaard, H.* ; Muilwijk, M.* ; Blom, M.T.* ; 't Hart, L.M.* ; Pattou, F.* ; Raverdy, V.* ; Brage, S.* ; Kokkola, T.* ; Heggie, A.* ; McEvoy, D.* ; Mourby, M.* ; Kaye, J.* ; Hattersley, A.* ; McDonald, T.A.* ; Ridderstråle, M.* ; Walker, M.* ; Forgie, I.* ; Giordano, G.N.* ; Pavo, I.* ; Ruetten, H.* ; Pedersen, O.* ; Hansen, T.* ; Dermitzakis, E.* ; Franks, P.W.* ; Schwenk, J.M.* ; Adamski, J. ; McCarthy, M.I.* ; Pearson, E.* ; Banasik, K.* ; Rasmussen, S.* ; Brunak, S.* ; IMI DIRECT Consortium (Thorand, B. ; Fritsche, A. ; Artati, A. ; Prehn, C. ; Grallert, H. ; Adam, J.)
Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models.
Nat. Biotechnol. 41, 399-408 (2023)
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Metformin Treatment; Multi-omics; Metaanalysis; Cholesterol
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1087-0156
e-ISSN
1546-1696
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 41,
Heft: 3,
Seiten: 399-408
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
New York, NY
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e)
G-504091-002
A-630710-001
G-500600-001
G-504000-002
G-502400-001
G-504091-004
Förderungen
Innovative Medicines Initiative
Novo Nordisk Fonden
Seventh Framework Programme
Copyright
Erfassungsdatum
2023-03-13