Pisula, J.I.* ; Datta, R.R.* ; Valdez, L.B.* ; Avemarg, J.R.* ; Jung, J.O.* ; Plum, P.* ; Löser, H.* ; Lohneis, P.* ; Meuschke, M.* ; Dos Santos, D.P.* ; Gebauer, F.* ; Quaas, A.* ; Walch, A.K. ; Bruns, C.J.* ; Lawonn, K.* ; Popp, F.C.* ; Bozek, K.*
Predicting the HER2 status in oesophageal cancer from tissue microarrays using convolutional neural networks.
Br. J. Cancer 128, 1369-1376 (2023)
BACKGROUND: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2 overexpression. METHODS: Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and tested on an independent set of 307 patient samples. We additionally verified the CNN's generalisation capabilities with an independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly in situ hybridisation (ISH) tests. RESULTS: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is superior to a predictive model based on the staining intensity only. CONCLUSIONS: We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Neoadjuvant Chemoradiotherapy; Chemoradiation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0007-0920
e-ISSN
1532-1827
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 128,
Heft: 7,
Seiten: 1369-1376
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-500390-001
Förderungen
Projekt DEAL
German Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2023-02-01