PuSH - Publikationsserver des Helmholtz Zentrums München

Pisula, J.I.* ; Datta, R.R.* ; Valdez, L.B.* ; Avemarg, J.R.* ; Jung, J.O.* ; Plum, P.* ; Löser, H.* ; Lohneis, P.* ; Meuschke, M.* ; Dos Santos, D.P.* ; Gebauer, F.* ; Quaas, A.* ; Walch, A.K. ; Bruns, C.J.* ; Lawonn, K.* ; Popp, F.C.* ; Bozek, K.*

Predicting the HER2 status in oesophageal cancer from tissue microarrays using convolutional neural networks.

Br. J. Cancer 128, 1369-1376 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
BACKGROUND: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor receptor 2 (HER2). We present a deep-learning method for scoring microscopy images of GEA for the presence of HER2 overexpression. METHODS: Our method is based on convolutional neural networks (CNNs) trained on a rich dataset of 1602 patient samples and tested on an independent set of 307 patient samples. We additionally verified the CNN's generalisation capabilities with an independent dataset with 653 samples from a separate clinical centre. We incorporated an attention mechanism in the network architecture to identify the tissue regions, which are important for the prediction outcome. Our solution allows for direct automated detection of HER2 in immunohistochemistry-stained tissue slides without the need for manual assessment and additional costly in situ hybridisation (ISH) tests. RESULTS: We show accuracy of 0.94, precision of 0.97, and recall of 0.95. Importantly, our approach offers accurate predictions in cases that pathologists cannot resolve and that require additional ISH testing. We confirmed our findings in an independent dataset collected in a different clinical centre. The attention-based CNN exploits morphological information in microscopy images and is superior to a predictive model based on the staining intensity only. CONCLUSIONS: We demonstrate that our approach not only automates an important diagnostic process for GEA patients but also paves the way for the discovery of new morphological features that were previously unknown for GEA pathology.
Impact Factor
Scopus SNIP
Altmetric
8.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Neoadjuvant Chemoradiotherapy; Chemoradiation
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0007-0920
e-ISSN 1532-1827
Quellenangaben Band: 128, Heft: 7, Seiten: 1369-1376 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort Campus, 4 Crinan St, London, N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
Förderungen Projekt DEAL
German Ministry of Education and Research (BMBF)
Scopus ID 85147021268
PubMed ID 36717673
Erfassungsdatum 2023-02-01