PuSH - Publikationsserver des Helmholtz Zentrums München

Automated shape-independent assessment of the spatial distribution of proton density fat fraction in vertebral bone marrow.

Z. Med. Phys., DOI: 10.1016/j.zemedi.2022.12.004 (2023)
Verlagsversion DOI PMC
Open Access Gold
This work proposes a method for automatic standardized assessment of bone marrow volume and spatial distribution of the proton density fat fraction (PDFF) in vertebral bodies. Intra- and interindividual variability in size and shape of vertebral bodies is a challenge for comparable interindividual evaluation and monitoring of changes in the composition and distribution of bone marrow due to aging and/or intervention. Based on deep learning image segmentation, bone marrow PDFF of single vertebral bodies is mapped to a cylindrical template and corrected for the inclination with respect to the horizontal plane. The proposed technique was applied and tested in a cohort of 60 healthy (30 males, 30 females) individuals. Obtained bone marrow volumes and mean PDFF values are comparable to former manual and (semi-)automatic approaches. Moreover, the proposed method allows shape-independent characterization of the spatial PDFF distribution inside vertebral bodies.
Impact Factor
Scopus SNIP
Altmetric
2.000
1.659
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bone Marrow ; Cse Mri ; Deep Learning ; Pdff ; Segmentation
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0939-3889
e-ISSN 1876-4436
Verlag Elsevier
Begutachtungsstatus Peer reviewed
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502400-001
Scopus ID 85147305869
PubMed ID 36725478
Erfassungsdatum 2023-02-10