Mills, S.A.* ; Bousiotis, D.* ; Maya-Manzano, J.M. ; Tummon, F.* ; MacKenzie, A.R.* ; Pope, F.D.*
Constructing a pollen proxy from low-cost Optical Particle Counter (OPC) data processed with Neural Networks and Random Forests.
Sci. Total Environ. 871:161969 (2023)
Pollen allergies affect a significant proportion of the global population, and this is expected to worsen in years to come. There is demand for the development of automated pollen monitoring systems. Low-cost Optical Particle Counters (OPCs) measure particulate matter and have attractive advantages of real-time high time resolution data and affordable costs. This study asks whether low-cost OPC sensors can be used for meaningful monitoring of airborne pollen. We employ a variety of methods, including supervised machine learning techniques, to construct pollen proxies from hourly-average OPC data and evaluate their performance, holding out 40 % of observations to test the proxies. The most successful methods are supervised machine learning Neural Network (NN) and Random Forest (RF) methods, trained from pollen concentrations collected from a Hirst-type sampler. These perform significantly better than using a simple particle size-filtered proxy or a Positive Matrix Factorisation (PMF) source apportionment pollen proxy. Twelve NN and RF models were developed to construct a pollen proxy, each varying by model type, input features and target variable. The results show that such models can construct useful information on pollen from OPC data. The best metrics achieved (Spearman correlation coefficient = 0.85, coefficient of determination = 0.67) were for the NN model constructing a Poaceae (grass) pollen proxy, based on particle size information, temperature, and relative humidity. Ability to distinguish high pollen events was evaluated using F1 Scores, a score reflecting the fraction of true positives with respect to false positives and false negatives, with promising results (F1 ≤ 0.83). Model-constructed proxies demonstrated the ability to follow monthly and diurnal trends in pollen. We discuss the suitability of OPCs for monitoring pollen and offer advice for future progress. We demonstrate an attractive alternative for automated pollen monitoring that could provide valuable and timely information to the benefit of pollen allergy sufferers.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Aerobiology ; Automatic Monitoring ; Low-cost Sensors ; Machine Learning ; Optical Particle Counter (opc) ; Pollen; Positive Matrix Factorization; Ice Nucleating Ability; Subpollen Particles; Source Apportionment; Birch Pollen; Release; Temperature; Performance; Immersion; Transport
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 871,
Heft: ,
Seiten: ,
Artikelnummer: 161969
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Allergy
PSP-Element(e)
G-505400-001
Förderungen
COST Action
EUMETNET AutoPollen Programme
Bayerisches Landesamt fuer Gesundheit undLebensmittelsicherheit (LGL)
grant "Quantification of Utility of Atmospheric Network Technologies (QUANT)"
Natural Environment Research Council (NERC) through its Central England NERC Training Alliance (CENTA) doctoral research training consortium, at the University of Birmingham
Copyright
Erfassungsdatum
2023-02-19