Romano, A.* ; Rizner, T.L.* ; Werner, H.M.J.* ; Semczuk, A.* ; Lowy, C.* ; Schröder, C.* ; Griesbeck, A.* ; Adamski, J. ; Fishman, D.* ; Tokarz, J.
Endometrial cancer diagnostic and prognostic algorithms based on proteomics, metabolomics, and clinical data: A systematic review.
Front. Oncol. 13:1120178 (2023)
Endometrial cancer is the most common gynaecological malignancy in developed countries. Over 382,000 new cases were diagnosed worldwide in 2018, and its incidence and mortality are constantly rising due to longer life expectancy and life style factors including obesity. Two major improvements are needed in the management of patients with endometrial cancer, i.e., the development of non/minimally invasive tools for diagnostics and prognostics, which are currently missing. Diagnostic tools are needed to manage the increasing number of women at risk of developing the disease. Prognostic tools are necessary to stratify patients according to their risk of recurrence pre-preoperatively, to advise and plan the most appropriate treatment and avoid over/under-treatment. Biomarkers derived from proteomics and metabolomics, especially when derived from non/minimally-invasively collected body fluids, can serve to develop such prognostic and diagnostic tools, and the purpose of the present review is to explore the current research in this topic. We first provide a brief description of the technologies, the computational pipelines for data analyses and then we provide a systematic review of all published studies using proteomics and/or metabolomics for diagnostic and prognostic biomarker discovery in endometrial cancer. Finally, conclusions and recommendations for future studies are also given.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Biomarker ; Endometrial Cancer ; Machine Learning ; Metabolomics ; Proteomics; Multidimensional Liquid-chromatography; Mass-spectrometry; Doxorubicin Resistance; Biomarker Discovery; Risk Classification; Protein Expression; Quality Assessment; Carcinoma; Identification; Verification
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2234-943X
e-ISSN
2234-943X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: ,
Seiten: ,
Artikelnummer: 1120178
Supplement: ,
Reihe
Verlag
Frontiers
Verlagsort
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30201 - Metabolic Health
Forschungsfeld(er)
Helmholtz Diabetes Center
Genetics and Epidemiology
PSP-Element(e)
G-502594-001
G-500600-001
Förderungen
National Centre for Research and Development Poland NCBiR grant ERA-NET
Estonian Research Council
German Federal Ministry for Education and Research (BMBF)
Dutch Cancer Society
MIZS, Ministry of Education, Science and Sports Slovenia
EU
Copyright
Erfassungsdatum
2023-10-06