PuSH - Publikationsserver des Helmholtz Zentrums München

Kozak, E.L. ; Miranda-Rodríguez, J.R. ; Borges, A. ; Dierkes, K.* ; Mineo, A.* ; Pinto-Teixeira, F.* ; Viader Llargues, O. ; Solon, J.* ; Chara, O.* ; López-Schier, H.

Quantitative videomicroscopy reveals latent control of cell-pair rotations in vivo.

Development 150:14 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Collective cell rotations are widely used during animal organogenesis. Theoretical and in vitro studies have conceptualized rotating cells as identical rigid-point objects that stochastically break symmetry to move monotonously and perpetually within an inert environment. However, it is unclear whether this notion can be extrapolated to a natural context, where rotations are ephemeral and heterogeneous cellular cohorts interact with an active epithelium. In zebrafish neuromasts, nascent sibling hair cells invert positions by rotating ≤180° around their geometric center after acquiring different identities via Notch1a-mediated asymmetric repression of Emx2. Here, we show that this multicellular rotation is a three-phasic movement that progresses via coherent homotypic coupling and heterotypic junction remodeling. We found no correlation between rotations and epithelium-wide cellular flow or anisotropic resistive forces. Moreover, the Notch/Emx2 status of the cell dyad does not determine asymmetric interactions with the surrounding epithelium. Aided by computer modeling, we suggest that initial stochastic inhomogeneities generate a metastable state that poises cells to move and spontaneous intercellular coordination of the resulting instabilities enables persistently directional rotations, whereas Notch1a-determined symmetry breaking buffers rotational noise.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
4.600
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Multicellular Rotations ; Patterning ; Regeneration ; Symmetry Breaking ; Zebrafish; Gene-expression; Motion; Regeneration; Migration; Drosophila; Establishment; Morphogenesis; Segmentation; Organization; Mechanics
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0950-1991
e-ISSN 1477-9129
Quellenangaben Band: 150, Heft: 9, Seiten: , Artikelnummer: 14 Supplement: ,
Verlag Company of Biologists
Verlagsort Bidder Building, Station Rd, Histon, Cambridge Cb24 9lf, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
Forschungsfeld(er) Stem Cell and Neuroscience
PSP-Element(e) G-500100-001
Förderungen Marie Curie Actions (MSCA)
Helmholtz-Gemeinschaft
New York University Abu Dhabi
School of Biosciences, University of Nottingham
Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
Fondo para la Investigacion Cientifica y Tecnologica
European Union
Scopus ID 85159547272
PubMed ID 36946430
Erfassungsdatum 2023-10-06