Schlaeger, S.* ; Drummer, K.* ; Husseini, M.E.* ; Kofler, F. ; Sollmann, N.* ; Schramm, S.* ; Zimmer, C.* ; Kirschke, J.S.* ; Wiestler, B.*
Implementation of GAN-based, synthetic T2-weighted fat saturated images in the routine radiological workflow improves spinal pathology detection.
Diagnostics 13:11 (2023)
(1) Background and Purpose: In magnetic resonance imaging (MRI) of the spine, T2-weighted (T2-w) fat-saturated (fs) images improve the diagnostic assessment of pathologies. However, in the daily clinical setting, additional T2-w fs images are frequently missing due to time constraints or motion artifacts. Generative adversarial networks (GANs) can generate synthetic T2-w fs images in a clinically feasible time. Therefore, by simulating the radiological workflow with a heterogenous dataset, this study's purpose was to evaluate the diagnostic value of additional synthetic, GAN-based T2-w fs images in the clinical routine. (2) Methods: 174 patients with MRI of the spine were retrospectively identified. A GAN was trained to synthesize T2-w fs images from T1-w, and non-fs T2-w images of 73 patients scanned in our institution. Subsequently, the GAN was used to create synthetic T2-w fs images for the previously unseen 101 patients from multiple institutions. In this test dataset, the additional diagnostic value of synthetic T2-w fs images was assessed in six pathologies by two neuroradiologists. Pathologies were first graded on T1-w and non-fs T2-w images only, then synthetic T2-w fs images were added, and pathologies were graded again. Evaluation of the additional diagnostic value of the synthetic protocol was performed by calculation of Cohen's ĸ and accuracy in comparison to a ground truth (GT) grading based on real T2-w fs images, pre- or follow-up scans, other imaging modalities, and clinical information. (3) Results: The addition of the synthetic T2-w fs to the imaging protocol led to a more precise grading of abnormalities than when grading was based on T1-w and non-fs T2-w images only (mean ĸ GT versus synthetic protocol = 0.65; mean ĸ GT versus T1/T2 = 0.56; p = 0.043). (4) Conclusions: The implementation of synthetic T2-w fs images in the radiological workflow significantly improves the overall assessment of spine pathologies. Thereby, high-quality, synthetic T2-w fs images can be virtually generated by a GAN from heterogeneous, multicenter T1-w and non-fs T2-w contrasts in a clinically feasible time, which underlines the reproducibility and generalizability of our approach.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
T2-w Fat Saturated Images ; Data Augmentation ; Generative Adversarial Network ; Magnetic Resonance Imaging ; Spine; Mri; Suppression; Infection; Fractures; Sequence; Echo
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2075-4418
e-ISSN
2075-4418
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 5,
Seiten: ,
Artikelnummer: 11
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530001-001
Förderungen
KKF
European Research Council (ERC) under the European Union
ERC
BMBF (German Ministry of Education and Research)
DFG
Copyright
Erfassungsdatum
2023-10-06