Cooperative functionalities in porous nanoparticles for seeking extracellular DNA and targeting pathogenic biofilms via photodynamic therapy.
ACS Appl. Mater. Interfaces 15, 14067-14076 (2023)
Many pathogenic bacteria are getting more and more resistant against antibiotic treatment and even become up to 1.000× times more resilient in the form of a mature biofilm. Thus, one is currently prospecting for alternative methods for treating microbial infections, and photodynamic therapy is a highly promising approach by creating so-called reactive oxygen species (ROS) produced by a photosensitizer (PS) upon irradiation with light. Unfortunately, the unspecific activity of ROS is also problematic as they are harmful to healthy tissue as well. Notably, one knows that uncontrolled existence of ROS in the body plays a major role in the development of cancer. These arguments create need for advanced theranostic materials which are capable of autonomous targeting and detecting the existence of a biofilm, followed by specific activation to combat the infection. The focus of this contribution is on mesoporous organosilica colloids functionalized by orthogonal and localized click-chemistry methods. The external zone of the particles is modified by a dye of the Hoechst family. The particles readily enter a mature biofilm where adduct formation with extracellular DNA and a resulting change in the fluorescence signal occurs, but they cannot cross cellular membranes such as in healthy tissue. A different dye suitable for photochemical ROS generation, Acridine Orange, is covalently linked to the surfaces of the internal mesopores. The spectral overlap between the emission of Hoechst with the absorption band of Acridine Orange facilitates energy transfer by Förster resonance with up to 88% efficiency. The theranostic properties of the materials including viability studies were investigated in vitro on mature biofilms formed by Pseudomonas fluorescens and prove the high efficacy.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Dna-binding Properties ; Förster Resonance Energy Transfer (fret) ; Antibacterial Photodynamic Therapy ; Biofilm Disruption ; Click Chemistry ; Multifunctional Materials ; Porous Organosilica Nanoparticles; Mesoporous Silica Nanoparticles; Organosilica; Hoechst-33258; Gradients; Skin
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1944-8244
e-ISSN
1944-8252
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 15,
Heft: 11,
Seiten: 14067-14076
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
ACS
Verlagsort
Washington, DC
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute of Medicinal Chemistry (IMC)
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-506300-001
Förderungen
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
Copyright
Erfassungsdatum
2023-10-06