Giannella, M.* ; Huth, M. ; Righi, E.* ; Hasenauer, J. ; Marconi, L.* ; Konnova, A.* ; Gupta, A.* ; Hotterbeekx, A.* ; Berkell, M.* ; Palacios-Baena, Z.R.* ; Morelli, M.C.* ; Tamè, M.* ; Busutti, M.* ; Potena, L.* ; Salvaterra, E.* ; Feltrin, G.* ; Gerosa, G.* ; Furian, L.* ; Burra, P.* ; Piano, S.* ; Cillo, U.* ; Cananzi, M.* ; Loy, M.* ; Zaza, G.* ; Onorati, F.* ; Carraro, A.* ; Gastaldon, F.* ; Nordio, M.* ; Kumar-Singh, S.* ; Baño, J.R.* ; Lazzarotto, T.* ; Viale, P.* ; Tacconelli, E.*
Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: The multicentre ORCHESTRA cohort.
Clin. Microbiol. Infect. 29, 1084.e1-1084.e7 (2023)
OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021-January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t0), second dose (t1), 3 ± 1 month (t2), and 1 month after third dose (t3). Negative AbR at t3 was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t0 to t3. Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36-0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35-0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Antibody Response ; Covid-19 ; Machine Learning ; Sars-cov-2 ; Solid Organ Transplantation ; Vaccination; Covid-19 Vaccine
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1198-743X
e-ISSN
1469-0691
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 29,
Heft: 8,
Seiten: 1084.e1-1084.e7
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-010
G-553800-001
Förderungen
European Union
Copyright
Erfassungsdatum
2023-10-06