Stephenson, N.* ; Pushparajah, K.* ; Wheeler, G.* ; Deng, S.* ; Schnabel, J.A. ; Simpson, J.M.*
Extended reality for procedural planning and guidance in structural heart disease - a review of the state-of-the-art.
Int. J. Cardiovasc. Imaging 39, 1405-1419 (2023)
Extended reality (XR), which encompasses virtual, augmented and mixed reality, is an emerging medical imaging display platform which enables intuitive and immersive interaction in a three-dimensional space. This technology holds the potential to enhance understanding of complex spatial relationships when planning and guiding cardiac procedures in congenital and structural heart disease moving beyond conventional 2D and 3D image displays. A systematic review of the literature demonstrates a rapid increase in publications describing adoption of this technology. At least 33 XR systems have been described, with many demonstrating proof of concept, but with no specific mention of regulatory approval including some prospective studies. Validation remains limited, and true clinical benefit difficult to measure. This review describes and critically appraises the range of XR technologies and its applications for procedural planning and guidance in structural heart disease while discussing the challenges that need to be overcome in future studies to achieve safe and effective clinical adoption.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Catheter Planning ; Extended Reality ; Procedure Guidance ; Structural Heart Disease ; Surgical Planning ; Virtual Reality; Virtual-reality; 3-dimensional Echocardiography; Augmented Reality; Beating-heart; Visualization; Display; Models; Feasibility; Navigation; Closure
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1569-5794
e-ISSN
1573-0743
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 39,
Heft: 7,
Seiten: 1405-1419
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Dordrecht [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2023-10-06