Haueise, T. ; Schick, F. ; Stefan, N. ; Schlett, C.L.* ; Weiss, J.B.* ; Nattenmüller, J.* ; Göbel-Guéniot, K.* ; Norajitra, T.* ; Nonnenmacher, T.* ; Kauczor, H.U.* ; Maier-Hein, K.H.* ; Niendorf, T.* ; Pischon, T.* ; Jöckel, K.H.* ; Umutlu, L.* ; Peters, A. ; Rospleszcz, S. ; Kröncke, T.* ; Hosten, N.* ; Völzke, H.* ; Krist, L.* ; Willich, S.N.* ; Bamberg, F.* ; Machann, J.
     
 
    
        
Analysis of volume and topography of adipose tissue in the trunk: Results of MRI of 11,141 participants in the German National Cohort.
    
    
        
    
    
        
        Sci. Adv. 9:eadd0433 (2023)
    
    
    
		
		
			
				This research addresses the assessment of adipose tissue (AT) and spatial distribution of visceral (VAT) and subcutaneous fat (SAT) in the trunk from standardized magnetic resonance imaging at 3 T, thereby demonstrating the feasibility of deep learning (DL)-based image segmentation in a large population-based cohort in Germany (five sites). Volume and distribution of AT play an essential role in the pathogenesis of insulin resistance, a risk factor of developing metabolic/cardiovascular diseases. Cross-validated training of the DL-segmentation model led to a mean Dice similarity coefficient of >0.94, corresponding to a mean absolute volume deviation of about 22 ml. SAT is significantly increased in women compared to men, whereas VAT is increased in males. Spatial distribution shows age- and body mass index-related displacements. DL-based image segmentation provides robust and fast quantification of AT (≈15 s per dataset versus 3 to 4 hours for manual processing) and assessment of its spatial distribution from magnetic resonance images in large cohort studies.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Multi-atlas Segmentation; Body-fat Distribution; Obesity; Population; Design; Burden; Images; Risk; Men
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        2375-2548
    
 
    
        e-ISSN
        2375-2548
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 9,  
	    Heft: 19,  
	    Seiten: ,  
	    Artikelnummer: eadd0433 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            American Association for the Advancement of Science (AAAS)
        
 
        
            Verlagsort
            Washington, DC [u.a.]
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        90000 - German Center for Diabetes Research
30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Helmholtz Diabetes Center
Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-502400-001
G-504000-010
    
 
    
        Förderungen
        Leibniz Association
Helmholtz Association
federal states
Federal Ministry of Education and Research (BMBF)
German Federal Ministry of Education and Research (BMBF)
German Research Foundation
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-06