Fürtjes, G. ; Reinecke, D.* ; von Spreckelsen, N.* ; Meißner, A.K.* ; Rueß, D.* ; Timmer, M.* ; Freudiger, C.* ; Ion-Margineanu, A.* ; Khalid, F.* ; Watrinet, K.* ; Mawrin, C.* ; Chmyrov, A. ; Goldbrunner, R.* ; Bruns, O.T. ; Neuschmelting, V.*
Intraoperative microscopic autofluorescence detection and characterization in brain tumors using stimulated Raman histology and two-photon fluorescence.
Front. Oncol. 13:1146031 (2023)
INTRODUCTION: The intrinsic autofluorescence of biological tissues interferes with the detection of fluorophores administered for fluorescence guidance, an emerging auxiliary technique in oncological surgery. Yet, autofluorescence of the human brain and its neoplasia is sparsely examined. This study aims to assess autofluorescence of the brain and its neoplasia on a microscopic level by stimulated Raman histology (SRH) combined with two-photon fluorescence. METHODS: With this experimentally established label-free microscopy technique unprocessed tissue can be imaged and analyzed within minutes and the process is easily incorporated in the surgical workflow. In a prospective observational study, we analyzed 397 SRH and corresponding autofluorescence images of 162 samples from 81 consecutive patients that underwent brain tumor surgery. Small tissue samples were squashed on a slide for imaging. SRH and fluorescence images were acquired with a dual wavelength laser (790 nm and 1020 nm) for excitation. In these images tumor and non-tumor regions were identified by a convolutional neural network that reliably differentiates between tumor, healthy brain tissue and low quality SRH images. The identified areas were used to define regions.of- interests (ROIs) and the mean fluorescence intensity was measured. RESULTS: In healthy brain tissue, we found an increased mean autofluorescence signal in the gray (11.86, SD 2.61, n=29) compared to the white matter (5.99, SD 5.14, n=11, p<0.01) and in the cerebrum (11.83, SD 3.29, n=33) versus the cerebellum (2.82, SD 0.93, n=7, p<0.001), respectively. The signal of carcinoma metastases, meningiomas, gliomas and pituitary adenomas was significantly lower (each p<0.05) compared to the autofluorescence in the cerebrum and dura, and significantly higher (each p<0.05) compared to the cerebellum. Melanoma metastases were found to have a higher fluorescent signal (p<0.01) compared to cerebrum and cerebellum. DISCUSSION: In conclusion we found that autofluorescence in the brain varies depending on the tissue type and localization and differs significantly among various brain tumors. This needs to be considered for interpreting photon signal during fluorescence-guided brain tumor surgery.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Autofluorescence ; Brain Tumor ; Fluorescence-guided Surgery (fgs) ; Stimulated Raman Histology; Spectroscopy; Lipofuscin
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2234-943X
e-ISSN
2234-943X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: ,
Seiten: ,
Artikelnummer: 1146031
Supplement: ,
Reihe
Verlag
Frontiers
Verlagsort
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Pioneer Campus
PSP-Element(e)
G-510001-001
Förderungen
BMBF (BetterView)
CZI Deep Tissue Imaging
National Center for Tumor Diseases Dresden (NCT/UCC Dresden)
Helmholtz Zentrum Muenchen
German Head and Neck Tumor Research Foundation
Joachim Herz fellowship for interdisciplinary life science
DFG (German Research Foundation
Copyright
Erfassungsdatum
2023-10-06