PuSH - Publikationsserver des Helmholtz Zentrums München

A systematic benchmark of machine learning methods for protein-RNA interaction prediction.

Brief. Bioinform. 24:bbad307 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
RNA-binding proteins (RBPs) are central actors of RNA post-transcriptional regulation. Experiments to profile-binding sites of RBPs in vivo are limited to transcripts expressed in the experimental cell type, creating the need for computational methods to infer missing binding information. While numerous machine-learning based methods have been developed for this task, their use of heterogeneous training and evaluation datasets across different sets of RBPs and CLIP-seq protocols makes a direct comparison of their performance difficult. Here, we compile a set of 37 machine learning (primarily deep learning) methods for in vivo RBP-RNA interaction prediction and systematically benchmark a subset of 11 representative methods across hundreds of CLIP-seq datasets and RBPs. Using homogenized sample pre-processing and two negative-class sample generation strategies, we evaluate methods in terms of predictive performance and assess the impact of neural network architectures and input modalities on model performance. We believe that this study will not only enable researchers to choose the optimal prediction method for their tasks at hand, but also aid method developers in developing novel, high-performing methods by introducing a standardized framework for their evaluation.
Impact Factor
Scopus SNIP
Altmetric
9.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Rna Biology ; Rna-binding Proteins ; Benchmark ; Deep Learning
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1467-5463
e-ISSN 1477-4054
Quellenangaben Band: 24, Heft: 5, Seiten: , Artikelnummer: bbad307 Supplement: ,
Verlag Oxford University Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503800-004
Scopus ID 85172423930
PubMed ID 37635383
Erfassungsdatum 2023-10-06