Maddu, S.* ; Sturm, D.* ; Cheeseman, B.L.* ; Müller, C.L. ; Sbalzarini, I.F.*
     
 
    
        
STENCIL-NET for equation-free forecasting from data.
    
    
        
    
    
        
        Sci. Rep. 13:12787 (2023)
    
    
    
		
		
			
				We present an artificial neural network architecture, termed STENCIL-NET, for equation-free forecasting of spatiotemporal dynamics from data. STENCIL-NET works by learning a discrete propagator that is able to reproduce the spatiotemporal dynamics of the training data. This data-driven propagator can then be used to forecast or extrapolate dynamics without needing to know a governing equation. STENCIL-NET does not learn a governing equation, nor an approximation to the data themselves. It instead learns a discrete propagator that reproduces the data. It therefore generalizes well to different dynamics and different grid resolutions. By analogy with classic numerical methods, we show that the discrete forecasting operators learned by STENCIL-NET are numerically stable and accurate for data represented on regular Cartesian grids. A once-trained STENCIL-NET model can be used for equation-free forecasting on larger spatial domains and for longer times than it was trained for, as an autonomous predictor of chaotic dynamics, as a coarse-graining method, and as a data-adaptive de-noising method, as we illustrate in numerical experiments. In all tests, STENCIL-NET generalizes better and is computationally more efficient, both in training and inference, than neural network architectures based on local (CNN) or global (FNO) nonlinear convolutions.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        2045-2322
    
 
    
        e-ISSN
        2045-2322
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 13,  
	    Heft: 1,  
	    Seiten: ,  
	    Artikelnummer: 12787 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Nature Publishing Group
        
 
        
            Verlagsort
            London
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
    
 
    
        Förderungen
        Projekt DEAL
Saxon Ministry for Science, Culture and Tourism (SMWK)
Germany's Federal Ministry of Education and Research (BMBF)
German Federal Ministry of Education and Research (Bundesministerium fuer Bildung und Forschung, BMBF) as part of the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-06