PuSH - Publikationsserver des Helmholtz Zentrums München

Braun, F.K.* ; Rothhammer-Hampl, T.* ; Lorenz, J.* ; Pohl, S.* ; Menevse, A.N.* ; Vollmann-Zwerenz, A.* ; Bumes, E.* ; Büttner, M. ; Zoubaa, S.* ; Proescholdt, M.* ; Schmidt, N.O.* ; Hau, P.* ; Beckhove, P.* ; Winner, B.* ; Riemenschneider, M.J.*

Scaffold-based (Matrigel™) 3D culture technique of glioblastoma recovers a patient-like immunosuppressive phenotype.

Cells 12:17 (2023)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Conventional 2D cultures are commonly used in cancer research though they come with limitations such as the lack of microenvironment or reduced cell heterogeneity. In this study, we investigated in what respect a scaffold-based (Matrigel™) 3D culture technique can ameliorate the limitations of 2D cultures. NGS-based bulk and single-cell sequencing of matched pairs of 2D and 3D models showed an altered transcription of key immune regulatory genes in around 36% of 3D models, indicating the reoccurrence of an immune suppressive phenotype. Changes included the presentation of different HLA surface molecules as well as cellular stressors. We also investigated the 3D tumor organoids in a co-culture setting with tumor-infiltrating lymphocytes (TILs). Of note, lymphocyte-mediated cell killing appeared less effective in clearing 3D models than their 2D counterparts. IFN-γ release, as well as live cell staining and proliferation analysis, pointed toward an elevated resistance of 3D models. In conclusion, we found that the scaffold-based (Matrigel™) 3D culture technique affects the transcriptional profile in a subset of GBM models. Thus, these models allow for depicting clinically relevant aspects of tumor-immune interaction, with the potential to explore immunotherapeutic approaches in an easily accessible in vitro system.
Impact Factor
Scopus SNIP
Altmetric
6.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Gbm ; Brain Cancer ; Next-generation Sequencing ; Single-cell Rna Sequencing ; Tumor Organoids; Central-nervous-system; Temozolomide; Cells; Microenvironment; Classification; Immunotherapy; Expression; Generation; Subtypes; Therapy
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2073-4409
e-ISSN 2073-4409
Zeitschrift Cells
Quellenangaben Band: 12, Heft: 14, Seiten: , Artikelnummer: 17 Supplement: ,
Verlag MDPI
Verlagsort Basel
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
Bavarian Research Network on the interaction of human brain cells (ForInter)
Scopus ID 85165886459
PubMed ID 37508520
Erfassungsdatum 2023-10-06