Meijs, C. ; Handoko, M.L.* ; Savarese, G.* ; Vernooij, R.W.M.* ; Vaartjes, I.* ; Banerjee, A.* ; Koudstaal, S.* ; Brugts, J.J.* ; Asselbergs, F.W.* ; Uijl, A.*
Discovering distinct phenotypical clusters in heart failure across the ejection fraction spectrum: A systematic review.
Curr. Heart Fail. Rep. 20, 333-349 (2023)
REVIEW PURPOSE: This systematic review aims to summarise clustering studies in heart failure (HF) and guide future clinical trial design and implementation in routine clinical practice. FINDINGS: 34 studies were identified (n = 19 in HF with preserved ejection fraction (HFpEF)). There was significant heterogeneity invariables and techniques used. However, 149/165 described clusters could be assigned to one of nine phenotypes: 1) young, low comorbidity burden; 2) metabolic; 3) cardio-renal; 4) atrial fibrillation (AF); 5) elderly female AF; 6) hypertensive-comorbidity; 7) ischaemic-male; 8) valvular disease; and 9) devices. There was room for improvement on important methodological topics for all clustering studies such as external validation and transparency of the modelling process. The large overlap between the phenotypes of the clustering studies shows that clustering is a robust approach for discovering clinically distinct phenotypes. However, future studies should invest in a phenotype model that can be implemented in routine clinical practice and future clinical trial design. HF = heart failure, EF = ejection fraction, HFpEF = heart failure with preserved ejection fraction, HFrEF = heart failure with reduced ejection fraction, CKD = chronic kidney disease, AF = atrial fibrillation, IHD = ischaemic heart disease, CAD = coronary artery disease, ICD = implantable cardioverter-defibrillator, CRT = cardiac resynchronization therapy, NT-proBNP = N-terminal pro b-type natriuretic peptide, BMI = Body Mass Index, COPD = Chronic obstructive pulmonary disease.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Clustering ; Heart Failure ; Machine Learning ; Phenotyping ; Precision Medicine; Chronic Kidney-disease; Atrial-fibrillation; Outcomes; Mechanisms; Prognosis; Midrange; Insights; Anemia
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1546-9530
e-ISSN
1546-9549
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 20,
Heft: 5,
Seiten: 333-349
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-554700-001
Förderungen
European Union
UK Research and Innovation
British Medical Association
National Institute for Health and Care Research (NIHR)
Dutch Heart Foundation (NHS)
Dutch CardioVascular Alliance
Dutch Heart Foundation
UCL Hospitals NIHR Biomedical Research Centre
EU/EFPIA Innovative Medicines Initiative 2 Joint Undertaking BigData@Heart
Copyright
Erfassungsdatum
2023-10-06