PuSH - Publikationsserver des Helmholtz Zentrums München

Teixeira Parente, M.* ; Brandl, G.* ; Franz, C.* ; Stuhr, U.* ; Ganeva, M.* ; Schneidewind, A.*

Active learning-assisted neutron spectroscopy with log-Gaussian processes.

Nat. Commun. 14:2246 (2023)
Verlagsversion DOI
Neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations by measuring intensity distributions to understand the origins of materials properties. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency and make better use of the experimenter’s time. In fact, there are a number of scientific problems that require searching for signals, which may be time consuming and inefficient if done manually due to measurements in uninformative regions. Here, we describe a probabilistic active learning approach that not only runs autonomously, i.e., without human interference, but can also directly provide locations for informative measurements in a mathematically sound and methodologically robust way by exploiting log-Gaussian processes. Ultimately, the resulting benefits can be demonstrated on a real TAS experiment and a benchmark including numerous different excitations.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
16.600
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 14, Heft: 1, Seiten: , Artikelnummer: 2246 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Scopus ID 85152978771
Erfassungsdatum 2023-11-30