Fogelberg, K.* ; Chamarthi, S.* ; Maron, R.C.* ; Niebling, J.* ; Brinker, T.J.*
    
 
    
        
Domain shifts in dermoscopic skin cancer datasets: Evaluation of essential limitations for clinical translation.
    
    
        
    
    
        
        New Biotech. 76, 106-117 (2023)
    
    
    
		
		
			
				The limited ability of Convolutional Neural Networks to generalize to images from previously unseen domains is a major limitation, in particular, for safety-critical clinical tasks such as dermoscopic skin cancer classification. In order to translate CNN-based applications into the clinic, it is essential that they are able to adapt to domain shifts. Such new conditions can arise through the use of different image acquisition systems or varying lighting conditions. In dermoscopy, shifts can also occur as a change in patient age or occurrence of rare lesion localizations (e.g. palms). These are not prominently represented in most training datasets and can therefore lead to a decrease in performance. In order to verify the generalizability of classification models in real world clinical settings it is crucial to have access to data which mimics such domain shifts. To our knowledge no dermoscopic image dataset exists where such domain shifts are properly described and quantified. We therefore grouped publicly available images from ISIC archive based on their metadata (e.g. acquisition location, lesion localization, patient age) to generate meaningful domains. To verify that these domains are in fact distinct, we used multiple quantification measures to estimate the presence and intensity of domain shifts. Additionally, we analyzed the performance on these domains with and without an unsupervised domain adaptation technique. We observed that in most of our grouped domains, domain shifts in fact exist. Based on our results, we believe these datasets to be helpful for testing the generalization capabilities of dermoscopic skin cancer classifiers.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Clinical Translation ; Dermoscopic Image ; Domain Shift ; Generalization ; Skin Lesion Classification ; Unsupervised Domain Adaptation; Convolutional Neural-network; Jensen-shannon Divergence; Classification; Adaptation; Dermatologists
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        1871-6784
    
 
    
        e-ISSN
        1876-4347
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 76,  
	    Heft: ,  
	    Seiten: 106-117 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            Radarweg 29, 1043 Nx Amsterdam, Netherlands
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Helmholtz AI - DLR (HAI - DLR)
    
 
    
        POF Topic(s)
        
    
 
    
        Forschungsfeld(er)
        
    
 
    
        PSP-Element(e)
        
    
 
    
        Förderungen
        Helmholtz AI funding
Helmholtz Artificial Intelligence Cooperation Unit (HAICU), Germany
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2023-10-06