PuSH - Publikationsserver des Helmholtz Zentrums München

Zamanian, A.* ; Ahmidi, N. ; Drton, M.*

Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms.

Stat. Med. 42, 5419-5450 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
The pattern graph framework solves a wide range of missing data problems with nonignorable mechanisms. However, it faces two challenges of assessability and interpretability, particularly important in safety-critical problems such as clinical diagnosis: (i) How can one assess the validity of the framework's a priori assumption and make necessary adjustments to accommodate known information about the problem? (ii) How can one interpret the process of exponential tilting used for sensitivity analysis in the pattern graph framework and choose the tilt perturbations based on meaningful real-world quantities? In this paper, we introduce Informed Sensitivity Analysis, an extension of the pattern graph framework that enables us to incorporate substantive knowledge about the missingness mechanism into the pattern graph framework. Our extension allows us to examine the validity of assumptions underlying pattern graphs and interpret sensitivity analysis results in terms of realistic problem characteristics. We apply our method to a prevalent nonignorable missing data scenario in clinical research. We validate and compare our method's results of our method with a number of widely-used missing data methods, including Unweighted CCA, KNN Imputer, MICE, and MissForest. The validation is done using both boot-strapped simulated experiments as well as real-world clinical observations in the MIMIC-III public dataset.
Impact Factor
Scopus SNIP
Altmetric
2.000
1.418
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Interpretability ; Nonignorable Missing Data ; Pattern Graph ; Safety Critical ; Sensitivity Analysis
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0277-6715
e-ISSN 1097-0258
Quellenangaben Band: 42, Heft: 29, Seiten: 5419-5450 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-007
Förderungen Bavarian Ministry for Economic Affairs, Regional Development and Energy
Scopus ID 85173008075
PubMed ID 37759370
Erfassungsdatum 2023-10-18