Raab, R.* ; Küderle, A.* ; Zakreuskaya, A.* ; Stern, A.D.* ; Klucken, J.* ; Kaissis, G. ; Rueckert, D.* ; Boll, S.* ; Eils, R.* ; Wagener, H.* ; Eskofier, B.M.*
Federated electronic health records for the European Health Data Space.
Lancet Digit. Health 5, e840-e847 (2023)
The European Commission's draft for the European Health Data Space (EHDS) aims to empower citizens to access their personal health data and share it with physicians and other health-care providers. It further defines procedures for the secondary use of electronic health data for research and development. Although this planned legislation is undoubtedly a step in the right direction, implementation approaches could potentially result in centralised data silos that pose data privacy and security risks for individuals. To address this concern, we propose federated personal health data spaces, a novel architecture for storing, managing, and sharing personal electronic health records that puts citizens at the centre—both conceptually and technologically. The proposed architecture puts citizens in control by storing personal health data on a combination of personal devices rather than in centralised data silos. We describe how this federated architecture fits within the EHDS and can enable the same features as centralised systems while protecting the privacy of citizens. We further argue that increased privacy and control do not contradict the use of electronic health data for research and development. Instead, data sovereignty and transparency encourage active participation in studies and data sharing. This combination of privacy-by-design and transparent, privacy-preserving data sharing can enable health-care leaders to break the privacy-exploitation barrier, which currently limits the secondary use of health data in many cases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2589-7500
e-ISSN
2589-7500
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 5,
Heft: 11,
Seiten: e840-e847
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
European Federation of Pharmaceutical Industries and Associations (EFPIA)
European Union's Horizon 2020 research and innovation programme
Mobilise-D project - Innovative Medicines Initiative (IMI) 2 Joint Undertaking
German Research Foundation
Federal Ministry for Economic Affairs and Climate Action of Germany
Private Artificial Intelligence in Medicine (PrivateAIM) projects
Bavarian State Ministry for Science and the Arts through the Munich Centre for Machine Learning
German Federal Ministry of Education and Research
Luxembourg Research Foundation
Federal Ministry for Economic Affairs and Climate Action
Copyright
Erfassungsdatum
2023-10-18