PuSH - Publikationsserver des Helmholtz Zentrums München

Wang, J.* ; Zhang, J.* ; Wu, J.* ; Huang, M.* ; Jia, L.* ; Li, L.* ; Zhang, Y.* ; Hu, H.* ; Liu, F.* ; Guan, Q.* ; Liu, M.* ; Adenusi, H.* ; Lin, H.* ; Passerini, S.*

Interfacial “Single-Atom-in-Defects” Catalysts Accelerating Li+ Desolvation Kinetics for Long-Lifespan Lithium-Metal Batteries.

Adv. Mater. 35 (2023)
Verlagsversion DOI
Open Access Hybrid
The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+, Li0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1−xS embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4 cathode, the full cell (10.7 mg cm−2) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications.
Impact Factor
Scopus SNIP
Altmetric
29.400
4.100
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Dendrite-free Lithium Plating ; In situ Sum Frequency Generation (sfg) ; Li-ion Desolvation ; Lithium-metal Batteries ; Single-atomic Catalysts
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0935-9648
e-ISSN 1521-4095
Zeitschrift Advanced materials
Quellenangaben Band: 35, Heft: 39 Seiten: , Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - KIT (HAI - KIT)
Scopus ID 85166952666
Erfassungsdatum 2023-10-18