PuSH - Publikationsserver des Helmholtz Zentrums München

Hörner, M.* ; Becker, J.* ; Bohnert, R.* ; Baños, M.* ; Jerez-Longres, C.* ; Mühlhäuser, V.* ; Härrer, D.* ; Wong, T.W. ; Meier, M. ; Weber, W.*

A photoreceptor-based hydrogel with red light-responsive reversible sol-gel transition as transient cellular matrix.

Adv. Mater. Technol. 8, 10:2300195 (2023)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel's light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions.
Impact Factor
Scopus SNIP
Altmetric
6.800
1.428
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cell Deposition ; Cellular Matrix ; Hydrogels ; Materials ; Microfluidics ; Optogenetics; In-vivo; Wavelength; Culture; Growth
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2365-709X
e-ISSN 2365-709X
Quellenangaben Band: 8, Heft: 16, Seiten: 10, Artikelnummer: 2300195 Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken, Nj 07030 Usa
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Pioneer Campus (HPC)
POF Topic(s) 30201 - Metabolic Health
Forschungsfeld(er) Pioneer Campus
PSP-Element(e) G-510002-001
Förderungen European Research Council (ERC)
Projekt DEAL
Ministry for Science, Research and Arts of the state of Baden-Wurttemberg
Excellence Initiative of the German Federal and State Governments - BIOSS
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Germany's Excellence Strategy - CIBSS
European Union (ERC)
Scopus ID 85162054017
Erfassungsdatum 2023-12-08