PuSH - Publikationsserver des Helmholtz Zentrums München

Gawlikowski, J.* ; Saha, S.* ; Niebling, J.* ; Zhu, X.X.*

Handling unexpected inputs: incorporating source-wise out-of-distribution detection into SAR-optical data fusion for scene classification.

EURASIP J. Adv. Signal Process. 2023, 21 (2023)
Verlagsversion DOI
The fusion of synthetic aperture radar (SAR) and optical satellite data is widely used for deep learning based scene classification. Counter-intuitively such neural networks are still sensitive to changes in single data sources, which can lead to unexpected behavior and a significant drop in performance when individual sensors fail or when clouds obscure the optical image. In this paper we incorporate source-wise out-of-distribution (OOD) detection into the fusion process at test time in order to not consider unuseful or even harmful information for the prediction. As a result, we propose a modified training procedure together with an adaptive fusion approach that weights the extracted information based on the source-wise in-distribution probabilities. We evaluate the proposed approach on the BigEarthNet multilabel scene classification data set and several additional OOD test cases as missing or damaged data, clouds, unknown classes, and coverage by snow and ice. The results show a significant improvement in robustness to different types of OOD data affecting only individual data sources. At the same time the approach maintains the classification performance of the baseline approaches compared. The code for the experiments of this paper is available on GitHub: https://github.com/JakobCode/OOD_DataFusion.
Impact Factor
Scopus SNIP
Altmetric
1.900
0.902
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Fusion ; Missing Modality ; Out-of-distribution ; Remote Sensing ; Robustness; Land-cover; Domain Adaptation; Network; Framework
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1110-8657
e-ISSN 1687-0433
Quellenangaben Band: 2023, Heft: 1, Seiten: 21 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort One New York Plaza, Suite 4600, New York, Ny, United States
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - DLR (HAI - DLR)
Förderungen German Federal Ministry for Economic Affairs and Climate Action
German Federal Ministry of Education and Research (BMBF)
Helmholtz Excellent Professorship "Data Science in Earth Observation -Big Data Fusion for Urban Research"
Helmholtz Association
European Research Council (ERC) under the European Union
international AI4EO FutureLab
German Aerospace Center (DLR)
Projekt DEAL
Scopus ID 85158987164
Erfassungsdatum 2023-10-18