möglich sobald bei der ZB eingereicht worden ist.
Handling unexpected inputs: incorporating source-wise out-of-distribution detection into SAR-optical data fusion for scene classification.
EURASIP J. Adv. Signal Process. 2023, 21 (2023)
The fusion of synthetic aperture radar (SAR) and optical satellite data is widely used for deep learning based scene classification. Counter-intuitively such neural networks are still sensitive to changes in single data sources, which can lead to unexpected behavior and a significant drop in performance when individual sensors fail or when clouds obscure the optical image. In this paper we incorporate source-wise out-of-distribution (OOD) detection into the fusion process at test time in order to not consider unuseful or even harmful information for the prediction. As a result, we propose a modified training procedure together with an adaptive fusion approach that weights the extracted information based on the source-wise in-distribution probabilities. We evaluate the proposed approach on the BigEarthNet multilabel scene classification data set and several additional OOD test cases as missing or damaged data, clouds, unknown classes, and coverage by snow and ice. The results show a significant improvement in robustness to different types of OOD data affecting only individual data sources. At the same time the approach maintains the classification performance of the baseline approaches compared. The code for the experiments of this paper is available on GitHub: https://github.com/JakobCode/OOD_DataFusion.
Impact Factor
Scopus SNIP
Altmetric
1.900
0.902
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Data Fusion ; Missing Modality ; Out-of-distribution ; Remote Sensing ; Robustness; Land-cover; Domain Adaptation; Network; Framework
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1110-8657
e-ISSN
1687-0433
Zeitschrift
EURASIP Journal on Advances in Signal Processing
Quellenangaben
Band: 2023,
Heft: 1,
Seiten: 21
Verlag
Springer
Verlagsort
One New York Plaza, Suite 4600, New York, Ny, United States
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - DLR (HAI - DLR)
Förderungen
German Federal Ministry for Economic Affairs and Climate Action
German Federal Ministry of Education and Research (BMBF)
Helmholtz Excellent Professorship "Data Science in Earth Observation -Big Data Fusion for Urban Research"
Helmholtz Association
European Research Council (ERC) under the European Union
international AI4EO FutureLab
German Aerospace Center (DLR)
Projekt DEAL
German Federal Ministry of Education and Research (BMBF)
Helmholtz Excellent Professorship "Data Science in Earth Observation -Big Data Fusion for Urban Research"
Helmholtz Association
European Research Council (ERC) under the European Union
international AI4EO FutureLab
German Aerospace Center (DLR)
Projekt DEAL
WOS ID
000981258600004
Scopus ID
85158987164
Erfassungsdatum
2023-10-18