Stoecklein, V.M.* ; Grosu, S.* ; Nikolova, T.* ; Tonn, J.C.* ; Zausinger, S.* ; Ricke, J.* ; Schlett, C.L.* ; Maurer, E.* ; Walter, S.S.* ; Peters, A. ; Bamberg, F.* ; Rospleszcz, S. ; Stoecklein, S.*
     
 
    
        
Strong association of depression and anxiety with the presence of 
back pain while impact of spinal imaging findings is limited: Analysis 
of an MRI cohort study.
    
    
        
    
    
        
        J. Pain 25, 497-507 (2024)
    
    
    
		
		
			
				Development of back pain is multifactorial, and it is not well understood which factors are the main drivers of the disease. We therefore applied a machine-learning approach to an existing large cohort study data set and sought to identify and rank the most important contributors to the presence of back pain amongst the documented parameters of the cohort. Data from 399 participants in the KORA-MRI (Cooperative health research in the region Augsburg-magnetic resonance imaging) (Cooperative Health Research in the Region Augsburg) study was analyzed. The data set included MRI images of the whole body, including the spine, metabolic, sociodemographic, anthropometric, and cardiovascular data. The presence of back pain was one of the documented items in this data set. Applying a machine-learning approach to this preexisting data set, we sought to identify the variables that were most strongly associated with back pain. Mediation analysis was performed to evaluate the underlying mechanisms of the identified associations. We found that depression and anxiety were the 2 most selected predictors for back pain in our model. Additionally, body mass index, spinal canal width and disc generation, medium and heavy physical work as well as cardiovascular factors were among the top 10 most selected predictors. Using mediation analysis, we found that the effects of anxiety and depression on the presence of back pain were mainly direct effects that were not mediated by spinal imaging. In summary, we found that psychological factors were the most important predictors of back pain in our cohort. This supports the notion that back pain should be treated in a personalized multidimensional framework. PERSPECTIVE: This article presents a wholistic approach to the problem of back pain. We found that depression and anxiety were the top predictors of back pain in our cohort. This strengthens the case for a multidimensional treatment approach to back pain, possibly with a special emphasis on psychological factors.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Back Pain ; Cohort Study ; Machine Learning ; Spinal Mri; Sagittal Alignment; Risk-factors; Population; Disorders; Pelvis; Comorbidity; Obesity; Kora
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        2023
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        1526-5900
    
 
    
        e-ISSN
        1528-8447
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 25,  
	    Heft: 2,  
	    Seiten: 497-507 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            Journal Production Dept, Robert Stevenson House, 1-3 Baxters Place, Leith Walk, Edinburgh Eh1 3af, Midlothian, Scotland
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Epidemiology (EPI)
    
 
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-504090-001
G-504000-010
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-11-28