Bazarova, A.* ; Raseta, M.*
    
 
    
        
CARRoT: R-package for predictive modelling by means of regression, adjusted for multiple regularisation methods.
    
    
        
    
    
        
        PLoS ONE 18, e0292597 (2023)
    
    
    
		
		
			
				We present an R-package for predictive modelling, CARRoT (Cross-validation, Accuracy, Regression, Rule of Ten). CARRoT is a tool for initial exploratory analysis of the data, which performs exhaustive search for a regression model yielding the best predictive power with heuristic 'rules of thumb' and expert knowledge as regularization parameters. It uses multiple hold-outs in order to internally validate the model. The package allows to take into account multiple factors such as collinearity of the predictors, event per variable rules (EPVs) and R-squared statistics during the model selection. In addition, other constraints, such as forcing specific terms and restricting complexity of the predictive models can be used. The package allows taking pairwise and three-way interactions between variables into account as well. These candidate models are then ranked by predictive power, which is assessed via multiple hold-out procedures and can be parallelised in order to reduce the computational time. Models which exhibited the highest average predictive power over all hold-outs are returned. This is quantified as absolute and relative error in case of continuous outcomes, accuracy and AUROC values in case of categorical outcomes. In this paper we briefly present statistical framework of the package and discuss the complexity of the underlying algorithm. Moreover, using CARRoT and a number of datasets available in R we provide comparison of different model selection techniques: based on EPVs alone, on EPVs and R-squared statistics, on lasso regression, on including only statistically significant predictors and on stepwise forward selection technique.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Validation; Events
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 18,  
	    Heft: 10,  
	    Seiten: e0292597 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Helmholtz AI - FZJ (HAI - FZJ)
    
 
    
        POF Topic(s)
        
    
 
    
        Forschungsfeld(er)
        
    
 
    
        PSP-Element(e)
        
    
 
    
        Förderungen
        Helmholtz Association Initiative and Networking Fund
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-11-28