Nissen, M.* ; Barrios Campo, N.* ; Flaucher, M.* ; Jaeger, K.M.* ; Titzmann, A.* ; Blunck, D.* ; Fasching, P.A.* ; Engelhardt, V.* ; Eskofier, B.M. ; Leutheuser, H.*
Prevalence and course of pregnancy symptoms using self-reported pregnancy app symptom tracker data.
NPJ Digit. Med. 6:189 (2023)
During pregnancy, almost all women experience pregnancy-related symptoms. The relationship between symptoms and their association with pregnancy outcomes is not well understood. Many pregnancy apps allow pregnant women to track their symptoms. To date, the resulting data are primarily used from a commercial rather than a scientific perspective. In this work, we aim to examine symptom occurrence, course, and their correlation throughout pregnancy. Self-reported app data of a pregnancy symptom tracker is used. In this context, we present methods to handle noisy real-world app data from commercial applications to understand the trajectory of user and patient-reported data. We report real-world evidence from patient-reported outcomes that exceeds previous works: 1,549,186 tracked symptoms from 183,732 users of a smartphone pregnancy app symptom tracker are analyzed. The majority of users track symptoms on a single day. These data are generalizable to those users who use the tracker for at least 5 months. Week-by-week symptom report data are presented for each symptom. There are few or conflicting reports in the literature on the course of diarrhea, fatigue, headache, heartburn, and sleep problems. A peak in fatigue in the first trimester, a peak in headache reports around gestation week 15, and a steady increase in the reports of sleeping difficulty throughout pregnancy are found. Our work highlights the potential of secondary use of industry data. It reveals and clarifies several previously unknown or disputed symptom trajectories and relationships. Collaboration between academia and industry can help generate new scientific knowledge.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Pelvic Girdle Pain; Low-back-pain; Risk-factors; Nausea; Sleep; Headache; Fatigue; Postpartum; Constipation; Depression
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2398-6352
e-ISSN
2398-6352
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 6,
Heft: 1,
Seiten: ,
Artikelnummer: 189
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
Heidelberger Platz 3, Berlin, 14197, Germany
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540008-001
Förderungen
Projekt DEAL
Friedrich-Alexander Universitat Erlangen-Nurnberg
Deutsche Forschungsgemeinschaft
German Research Foundation (DFG)
Federal Ministry of Health
Copyright
Erfassungsdatum
2023-11-28