PuSH - Publikationsserver des Helmholtz Zentrums München

Loureiro, H. ; Kolben, T.M.* ; Kiermaier, A.* ; Rüttinger, D.* ; Ahmidi, N. ; Becker, T.* ; Bauer-Mehren, A.*

Correlation between early trends of a prognostic biomarker and overall survival in non-small-cell lung cancer clinical trials.

JCO Clin. Can. Inform. 7:e2300062 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
PURPOSE: Overall survival (OS) is the primary end point in phase III oncology trials. Given low success rates, surrogate end points, such as progression-free survival or objective response rate, are used in early go/no-go decision making. Here, we investigate whether early trends of OS prognostic biomarkers, such as the ROPRO and DeepROPRO, can also be used for this purpose. METHODS: Using real-world data, we emulated a series of 12 advanced non-small-cell lung cancer (aNSCLC) clinical trials, originally conducted by six different sponsors and evaluated four different mechanisms, in a total of 19,920 individuals. We evaluated early trends (until 6 months) of the OS biomarker alongside early OS within the joint model (JM) framework. Study-level estimates of early OS and ROPRO trends were correlated against the actual final OS hazard ratios (HRs). RESULTS: We observed a strong correlation between the JM estimates and final OS HR at 3 months (adjusted R2 = 0.88) and at 6 months (adjusted R2 = 0.85). In the leave-one-out analysis, there was a low overall prediction error of the OS HR at both 3 months (root-mean-square error [RMSE] = 0.11) and 6 months (RMSE = 0.12). In addition, at 3 months, the absolute prediction error of the OS HR was lower than 0.05 for three trials. CONCLUSION: We describe a pipeline to predict trial OS HRs using emulated aNSCLC studies and their early OS and OS biomarker trends. The method has the potential to accelerate and improve decision making in drug development.
Impact Factor
Scopus SNIP
Altmetric
4.200
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2473-4276
e-ISSN 2473-4276
Quellenangaben Band: 7, Heft: , Seiten: , Artikelnummer: e2300062 Supplement: ,
Verlag American Society of Clinical Oncology
Verlagsort Alexandria
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503800-007
PubMed ID 37922432
Erfassungsdatum 2023-11-28