PuSH - Publikationsserver des Helmholtz Zentrums München

Zhao, Y.* ; Zhu, Z.* ; Chen, B.* ; Qiu, S.* ; Huang, J.* ; Lu, X.* ; Yang, W.* ; Ai, C.* ; Huang, K.* ; He, C. ; Jin, Y.* ; Liu, Z.* ; Wang, F.Y.*

Toward parallel intelligence: An interdisciplinary solution for complex systems.

Innovation 4:100521 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
The growing complexity of real-world systems necessitates interdisciplinary solutions to confront myriad challenges in modeling, analysis, management, and control. To meet these demands, the parallel systems method rooted in the artificial systems, computational experiments, and parallel execution (ACP) approach has been developed. The method cultivates a cycle termed parallel intelligence, which iteratively creates data, acquires knowledge, and refines the actual system. Over the past two decades, the parallel systems method has continuously woven advanced knowledge and technologies from various disciplines, offering versatile interdisciplinary solutions for complex systems across diverse fields. This review explores the origins and fundamental concepts of the parallel systems method, showcasing its accomplishments as a diverse array of parallel technologies and applications while also prognosticating potential challenges. We posit that this method will considerably augment sustainable development while enhancing interdisciplinary communication and cooperation.
Impact Factor
Scopus SNIP
Altmetric
33.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Computational Social-science; Of-the-art; Transportation Systems; Knowledge Automation; Autonomous Vehicles; Evacuation; Framework; Organizations; Metaverses; Scenarios
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2666-6758
e-ISSN 2666-6758
Zeitschrift Innovation
Quellenangaben Band: 4, Heft: 6, Seiten: , Artikelnummer: 100521 Supplement: ,
Verlag Zeiss
Verlagsort 50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-001
Förderungen Hunan Science and Technology Plan project
National Social Science Foundation of China
Social Science Foundation of Shanghai
National Major Research & Develop- ment Program of China, Social Science Foundation of Shanghai
Special Key Project of Biosafety Technologies for the National Major Research & Development Program of China
National Natural Science Foundation of China
Scopus ID 85174437799
PubMed ID 37915363
Erfassungsdatum 2023-11-28